洛谷题目链接:任务安排

题目描述

N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

例如:S=1;T={1,3,4,2,1};F={3,2,3,3,4}。如果分组方案是{1,2}、{3}、{4,5},则完成时间分别为{5,5,10,14,14},费用C={15,10,30,42,56},总费用就是153。

输入输出格式

输入格式:

第一行是N(1<=N<=5000)。

第二行是S(0<=S<=50)。

下面N行每行有一对数,分别为Ti和Fi,均为不大于100的正整数,表示第i个任务单独完成所需的时间是Ti及其费用系数Fi。

输出格式:

一个数,最小的总费用。

输入输出样例

输入样例#1:

5

1

1 3

3 2

4 3

2 3

1 4

输出样例#1:

153


一句话题意: 目前有\(n\)个任务,需要分成若干组,完成一组任务所需要的时间是这组任务中所有任务完成所需要时间的总和.且完成一组任务的时间相同(也就是被分到同一组内的任务都是同时完成的),完成一组任务的费用是这组任务的完成时刻与这组任务的费用系数之和的乘积.现在要求出一种方案使得完成\(n\)个任务的费用最小.


题解: 显然是一个区间DP, 那么我们可以定义状态\(f[i]\)表示到第\(i\)个任务所需要的最小费用,显然可以直接枚举断点\(j(0 \leq j < i)\)来进行转移,但是这时候问题来了:

如何计算完成时间?

这里有一种巧妙的方法,我们在计算花费的时候不考虑之前用了多久的时间,而是将这次合并之后所有任务都加上\(S\)的时间.那么可以列出状态转移方程:

\[f[i] = min(f[i], f[j]+(prec[n]-prec[j])*s+pret[i]*(prec[i]-prec[j]));
\]

其中\(prec\)是费用的前缀和,\(pret\)是时间的前缀和.那么这样做事实上是现将之后要多加进来的时间先算进去了,但是与后面的分组情况是无关的,所以并没有后效性.

#include<bits/stdc++.h>
using namespace std;
const int N=5000+5; int n, s, t[N], c[N], pret[N], prec[N], fin[N];
int f[N]; int main(){
ios::sync_with_stdio(false);
cin >> n >> s;
for(int i=1;i<=n;i++){
cin >> t[i] >> c[i];
prec[i] = prec[i-1]+c[i];
pret[i] = pret[i-1]+t[i];
} memset(f, 127, sizeof(f)); f[0] = 0; for(int i=1;i<=n;i++)
for(int j=0;j<i;j++)
f[i] = min(f[i], f[j]+(prec[n]-prec[j])*s+pret[i]*(prec[i]-prec[j])); printf("%d\n", f[n]);
return 0;
}

[洛谷P2365] 任务安排的更多相关文章

  1. 2018.07.09 洛谷P2365 任务安排(线性dp)

    P2365 任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...

  2. 洛谷P2365 任务安排(斜率优化dp)

    传送门 思路: 最朴素的dp式子很好考虑:设\(dp(i,j)\)表示前\(i\)个任务,共\(j\)批的最小代价. 那么转移方程就有: \[ dp(i,j)=min\{dp(k,j-1)+(sumT ...

  3. 洛谷P2365 任务安排 [解法二 斜率优化]

    解法一:http://www.cnblogs.com/SilverNebula/p/5926253.html 解法二:斜率优化 在解法一中有这样的方程:dp[i]=min(dp[i],dp[j]+(s ...

  4. 洛谷P2365 任务安排 [解法一]

    题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始 ...

  5. 洛谷 P2365 任务安排【dp】

    其实是可以斜率优化的但是没啥必要 设st为花费时间的前缀和,sf为Fi的前缀和,f[i]为分组到i的最小花费 然后枚举j转移,考虑每次转移都是把j到i分为一组这样意味着j及之后的都要增加s的时间,同时 ...

  6. 洛谷 P2365 任务安排_代价提前计算 + 好题

    最开始,笔者将状态 fif_{i}fi​ 定义为1到i的最小花费 ,我们不难得到这样的一个状态转移方程,即 fi=(sumti−sumtj+S+Costj)∗(sumfi−sumfj)f_{i}=(s ...

  7. [洛谷 P2365] 任务安排 (线性dp)

    3月14日第二题!! 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...

  8. 洛谷P2365/5785 任务安排 题解 斜率优化DP

    任务安排1(小数据):https://www.luogu.com.cn/problem/P2365 任务安排2(大数据):https://www.luogu.com.cn/problem/P5785 ...

  9. 洛谷 P1160 队列安排 Label:链表 数据结构

    题目描述 一个学校里老师要将班上N个同学排成一列,同学被编号为1-N,他采取如下的方法: 1.先将1号同学安排进队列,这时队列中只有他一个人: 2.2-N号同学依次入列,编号为i的同学入列方式为:老师 ...

随机推荐

  1. [leetcode-666-Path Sum IV]

    If the depth of a tree is smaller than 5, then this tree can be represented by a list of three-digit ...

  2. GitHub把自己整个文件夹上传

    我已经有了自己github,但是我怎么对我的项目进行上传呢,普通的上传只有上传单一的文件 这不我去下载了Git(链接至机房ftp文件夹下文件ftp://10.64.130.1/%C8%ED%BC%FE ...

  3. 20145214 《Java程序设计》第2周学习总结

    20145214 <Java程序设计>第2周学习总结 教材学习内容总结 基本类型 整数:可分为short整数.int整数.long整数. 字节:即byte类型,可表示-128~127的整数 ...

  4. 数论的欧拉定理证明 &amp; 欧拉函数公式(转载)

    欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) . 完全余数集合:定义小于 n 且和 n 互质的数 ...

  5. 移动端调试和fiddler移动端抓包使用

    这里介绍一款移动端的调试工具以及抓包工具fiddler的使用.也是初次接触,算是初次接触的总结. 1,移动端调试工具.手机截图如下 代码实现 <!DOCTYPE html> <htm ...

  6. idea dubbo jar error:cvc-complex-type.2.4.c: 通配符的匹配很全面, 但无法找到元素 'dubbo:application' 的声明

    声明: 出现这个错误的情形是,在idea开发环境里面运行是没有问题的,使用哦idea自带的打包工具生成jar之后,运行jar的时候报的这个错误,如果不是这个情况,这篇文章可能不适用. 主要的原因是sp ...

  7. hadoop fs 部分命令详解

    1,Hadoop fs –fs [local | <file system URI>]:声明hadoop使用的文件系统,如果不声明的话,使用当前配置文件配置的,按如下顺序查找:hadoop ...

  8. 身份证验证php

    /**  * 验证身份证号  * @param $vStr  * @return bool  */ function isCreditNo($vStr) {     $vCity = array(   ...

  9. Sass的命令编译

    [Sass]命令编译 命令编译是指使用你电脑中的命令终端,通过输入 Sass 指令来编译 Sass.这种编译方式是最直接也是最简单的一种方式.因为只需要在你的命令终端输入: 单文件编译: sass & ...

  10. 【SQLAlchemy】SQLAlchemy技术文档(中文版)(上)

    1.版本检查 import sqlalchemy sqlalchemy.__version__ 2.连接 from sqlalchemy import create_engine engine = c ...