先说结论

  • tf.feature_column.input_layer()的api,会对传入的feature_columns进行排序,并不是按照输入顺序进行组织,排序依据基于feature_column的name(tf生成的,类似于'u_wu211_indicator', 'u_wu215_indicator', 'r_rsp113_indicator', 'u_wu211_X_u_wu215_indicator'这种。
  • 关键代码:
for column in sorted(feature_columns, key=lambda x: x.name):
ordered_columns.append(column)
  • 代码验证:
In [31]: [x.name for x in sorted( fcs, key=lambda x: x.name)]
Out[31]:
['r_rsp113_indicator',
'u_wu211_X_u_wu215_indicator',
'u_wu211_indicator',
'u_wu215_indicator']

表现

In [24]: u_wu211 = tf.feature_column.categorical_column_with_vocabulary_list(key='u_wu211', vocabulary_list=['0','1','2'])
...: u_wu215 = tf.feature_column.categorical_column_with_vocabulary_list(key='u_wu215', vocabulary_list=['00s','10s','90s'])
...: r_rsp113 = tf.feature_column.categorical_column_with_vocabulary_list(key='r_rsp113', vocabulary_list=['0','-1','1'])
...: u_wu211_u_wu215_cross = tf.feature_column.crossed_column(keys = [u_wu211, u_wu215], hash_bucket_size=3)
...: print(tf.feature_column.input_layer(tfeatures, [tf.feature_column.indicator_column(u_wu211)]))
...: print(tf.feature_column.input_layer(tfeatures, [tf.feature_column.indicator_column(u_wu215)]))
...: print(tf.feature_column.input_layer(tfeatures, [tf.feature_column.indicator_column(r_rsp113)]))
...: print(tf.feature_column.input_layer(tfeatures, [tf.feature_column.indicator_column(u_wu211_u_wu215_cross)]))
...: print(tf.feature_column.input_layer(tfeatures, [tf.feature_column.indicator_column(u_wu211),
...: tf.feature_column.indicator_column(u_wu215),
...: tf.feature_column.indicator_column(r_rsp113),
...: tf.feature_column.indicator_column(u_wu211_u_wu215_cross)
...: ]))
...:
tf.Tensor(
[[1. 0. 0.]
[0. 0. 1.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[0. 0. 0.]
[1. 0. 0.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[0. 1. 0.]
[0. 1. 0.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[0. 0. 1.]
[0. 0. 1.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[0. 1. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 1. 0. 0. 1. 1. 0. 0.]], shape=(2, 12), dtype=float32)
  • 由第一条sample举例:期望得到的是u_wu211 + u_wu215 + r_rsp113 + u_wu211_u_wu215_cross

    • 即:[1. 0. 0.] + [0. 0. 0.] + [0. 1. 0.] + [0. 0. 1.]
    • 但得到的却是:[0. 1. 0.] + [0. 0. 1.] + [1. 0. 0.] + [0. 0. 0.],也就是['r_rsp113', 'u_wu211_u_wu215_cross', 'u_wu211', 'u_wu215']

文档描述

    feature_columns: An iterable containing the FeatureColumns to use as inputs
to your model. All items should be instances of classes derived from
`_DenseColumn` such as `numeric_column`, `embedding_column`,
`bucketized_column`, `indicator_column`. If you have categorical features,
you can wrap them with an `embedding_column` or `indicator_column`.
  • feature_columns参数接收一个:包含模型中使用到的FeatureColumns的一个迭代器,列表中的项目都应该是_DenseColumn类的实例化对象,例如numeric_column, embedding_column, bucketized_column, indicator_column.如果是标签类别的特征,需要用embedding_column or indicator_column转换一下。
  • 其中并未解释特征顺序相关问题。

源码探究

  • tf.feature_column.input_layer
@tf_export(v1=['feature_column.input_layer'])
def input_layer(features,
feature_columns,
weight_collections=None,
trainable=True,
cols_to_vars=None,
cols_to_output_tensors=None):
"""Returns a dense `Tensor` as input layer based on given `feature_columns`. Generally a single example in training data is described with FeatureColumns.
At the first layer of the model, this column oriented data should be converted
to a single `Tensor`. Example: ``python
price = numeric_column('price')
keywords_embedded = embedding_column(
categorical_column_with_hash_bucket("keywords", 10K), dimensions=16)
columns = [price, keywords_embedded, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
for units in [128, 64, 32]:
dense_tensor = tf.compat.v1.layers.dense(dense_tensor, units, tf.nn.relu)
prediction = tf.compat.v1.layers.dense(dense_tensor, 1)
`` Args:
features: A mapping from key to tensors. `_FeatureColumn`s look up via these
keys. For example `numeric_column('price')` will look at 'price' key in
this dict. Values can be a `SparseTensor` or a `Tensor` depends on
corresponding `_FeatureColumn`.
feature_columns: An iterable containing the FeatureColumns to use as inputs
to your model. All items should be instances of classes derived from
`_DenseColumn` such as `numeric_column`, `embedding_column`,
`bucketized_column`, `indicator_column`. If you have categorical features,
you can wrap them with an `embedding_column` or `indicator_column`.
weight_collections: A list of collection names to which the Variable will be
added. Note that variables will also be added to collections
`tf.GraphKeys.GLOBAL_VARIABLES` and `ops.GraphKeys.MODEL_VARIABLES`.
trainable: If `True` also add the variable to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
cols_to_vars: If not `None`, must be a dictionary that will be filled with a
mapping from `_FeatureColumn` to list of `Variable`s. For example, after
the call, we might have cols_to_vars =
{_EmbeddingColumn(
categorical_column=_HashedCategoricalColumn(
key='sparse_feature', hash_bucket_size=5, dtype=tf.string),
dimension=10): [<tf.Variable 'some_variable:0' shape=(5, 10),
<tf.Variable 'some_variable:1' shape=(5, 10)]}
If a column creates no variables, its value will be an empty list.
cols_to_output_tensors: If not `None`, must be a dictionary that will be
filled with a mapping from '_FeatureColumn' to the associated
output `Tensor`s. Returns:
A `Tensor` which represents input layer of a model. Its shape
is (batch_size, first_layer_dimension) and its dtype is `float32`.
first_layer_dimension is determined based on given `feature_columns`. Raises:
ValueError: if an item in `feature_columns` is not a `_DenseColumn`.
"""
return _internal_input_layer(
features,
feature_columns,
weight_collections=weight_collections,
trainable=trainable,
cols_to_vars=cols_to_vars,
cols_to_output_tensors=cols_to_output_tensors)
  • _internal_input_layer

def _internal_input_layer(features,
feature_columns,
weight_collections=None,
trainable=True,
cols_to_vars=None,
scope=None,
cols_to_output_tensors=None,
from_template=False):
"""See input_layer. `scope` is a name or variable scope to use.""" feature_columns = _normalize_feature_columns(feature_columns)
for column in feature_columns:
if not isinstance(column, _DenseColumn):
raise ValueError(
'Items of feature_columns must be a _DenseColumn. '
'You can wrap a categorical column with an '
'embedding_column or indicator_column. Given: {}'.format(column))
weight_collections = list(weight_collections or [])
if ops.GraphKeys.GLOBAL_VARIABLES not in weight_collections:
weight_collections.append(ops.GraphKeys.GLOBAL_VARIABLES)
if ops.GraphKeys.MODEL_VARIABLES not in weight_collections:
weight_collections.append(ops.GraphKeys.MODEL_VARIABLES) def _get_logits(): # pylint: disable=missing-docstring
builder = _LazyBuilder(features)
output_tensors = []
ordered_columns = []
for column in sorted(feature_columns, key=lambda x: x.name):
ordered_columns.append(column)
with variable_scope.variable_scope(
None, default_name=column._var_scope_name): # pylint: disable=protected-access
tensor = column._get_dense_tensor( # pylint: disable=protected-access
builder,
weight_collections=weight_collections,
trainable=trainable)
num_elements = column._variable_shape.num_elements() # pylint: disable=protected-access
batch_size = array_ops.shape(tensor)[0]
output_tensor = array_ops.reshape(
tensor, shape=(batch_size, num_elements))
output_tensors.append(output_tensor)
if cols_to_vars is not None:
# Retrieve any variables created (some _DenseColumn's don't create
# variables, in which case an empty list is returned).
cols_to_vars[column] = ops.get_collection(
ops.GraphKeys.GLOBAL_VARIABLES,
scope=variable_scope.get_variable_scope().name)
if cols_to_output_tensors is not None:
cols_to_output_tensors[column] = output_tensor
_verify_static_batch_size_equality(output_tensors, ordered_columns)
return array_ops.concat(output_tensors, 1) # If we're constructing from the `make_template`, that by default adds a
# variable scope with the name of the layer. In that case, we dont want to
# add another `variable_scope` as that would break checkpoints.
if from_template:
return _get_logits()
else:
with variable_scope.variable_scope(
scope, default_name='input_layer', values=features.values()):
return _get_logits()
  • 两处需要注意:

    • 在_get_logits中,_LazyBuilder对重复引用的特征做了去重,并且延迟初始化
    • 另外在添加特征中,引入了一个排序,基于feature_column的name(tf生成的,类似于'u_wu211_indicator', 'u_wu215_indicator', 'r_rsp113_indicator', 'u_wu211_X_u_wu215_indicator'这种。
    • 代码如下:
  def _get_logits():  # pylint: disable=missing-docstring
builder = _LazyBuilder(features)
output_tensors = []
ordered_columns = []
for column in sorted(feature_columns, key=lambda x: x.name):
ordered_columns.append(column)
with variable_scope.variable_scope(
None, default_name=column._var_scope_name): # pylint: disable=protected-access

结论验证

In [29]: fcs = [tf.feature_column.indicator_column(u_wu211),
...: tf.feature_column.indicator_column(u_wu215),
...: tf.feature_column.indicator_column(r_rsp113),
...: tf.feature_column.indicator_column(u_wu211_u_wu215_cross)
...: ] In [30]: sorted( fcs, key=lambda x: x.name)
Out[30]:
[IndicatorColumn(categorical_column=VocabularyListCategoricalColumn(key='r_rsp113', vocabulary_list=('0', '-1', '1'), dtype=tf.string, default_value=-1, num_oov_buckets=0)),
IndicatorColumn(categorical_column=CrossedColumn(keys=(VocabularyListCategoricalColumn(key='u_wu211', vocabulary_list=('0', '1', '2'), dtype=tf.string, default_value=-1, num_oov_buckets=0), VocabularyListCategoricalColumn(key='u_wu215', vocabulary_list=('00s', '10s', '90s'), dtype=tf.string, default_value=-1, num_oov_buckets=0)), hash_bucket_size=3, hash_key=None)),
IndicatorColumn(categorical_column=VocabularyListCategoricalColumn(key='u_wu211', vocabulary_list=('0', '1', '2'), dtype=tf.string, default_value=-1, num_oov_buckets=0)),
IndicatorColumn(categorical_column=VocabularyListCategoricalColumn(key='u_wu215', vocabulary_list=('00s', '10s', '90s'), dtype=tf.string, default_value=-1, num_oov_buckets=0))]
In [31]: [x.name for x in sorted( fcs, key=lambda x: x.name)]
Out[31]:
['r_rsp113_indicator',
'u_wu211_X_u_wu215_indicator',
'u_wu211_indicator',
'u_wu215_indicator']
  • 期望结果:
  • ['r_rsp113_indicator', 'u_wu211_X_u_wu215_indicator', 'u_wu211_indicator', 'u_wu215_indicator']
    • 即: [0. 1. 0.] + [0. 0. 1.] + [1. 0. 0.] + [0. 0. 0.]
    • [0. 1. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0.]
    • 与预期一致。

tf.feature_column.input_layer 特征顺序问题的更多相关文章

  1. tensorflow feature_column踩坑合集

    踩坑内容包含以下 feature_column的输入输出类型,用一个数据集给出demo feature_column接estimator feature_column接Keras feature_co ...

  2. tf.estimator

    estimator同keras是tensorflow的高级API.在tensorflow1.13以上,estimator已经作为一个单独的package从tensorflow分离出来了.estimat ...

  3. 使用movielens数据集动手实现youtube推荐候选集生成

    综述 之前在博客中总结过nce损失和YouTuBe DNN推荐;但大多都还是停留在理论层面,没有实践经验.所以笔者想借由此文继续深入探索YouTuBe DNN推荐,另外也进一步总结TensorFlow ...

  4. CTR学习笔记&代码实现5-深度ctr模型 DeepCrossing -> DCN

    之前总结了PNN,NFM,AFM这类两两向量乘积的方式,这一节我们换新的思路来看特征交互.DeepCrossing是最早在CTR模型中使用ResNet的前辈,DCN在ResNet上进一步创新,为高阶特 ...

  5. tensorflow创建自定义 Estimator

    https://www.tensorflow.org/guide/custom_estimators?hl=zh-cn 创建自定义 Estimator 本文档介绍了自定义 Estimator.具体而言 ...

  6. 4. Tensorflow的Estimator实践原理

    1. Tensorflow高效流水线Pipeline 2. Tensorflow的数据处理中的Dataset和Iterator 3. Tensorflow生成TFRecord 4. Tensorflo ...

  7. 创建自定义 Estimator

    ref 本文档介绍了自定义 Estimator.具体而言,本文档介绍了如何创建自定义 Estimator 来模拟预创建的 Estimator DNNClassifier 在解决鸢尾花问题时的行为.要详 ...

  8. TensorFlow低阶API(一)—— 简介

    简介 本文旨在知道您使用低级别TensorFlow API(TensorFlow Core)开始编程.您可以学习执行以下操作: 管理自己的TensorFlow程序(tf.Graph)和TensorFl ...

  9. 【推荐算法工程师技术栈系列】分布式&数据库--tensorflow

    目录 TensorFlow 高阶API Dataset(tf.data) Estimator(tf.estimator) FeatureColumns(tf.feature_column) tf.nn ...

  10. CTR学习笔记&代码实现1-深度学习的前奏LR->FFM

    CTR学习笔记系列的第一篇,总结在深度模型称王之前经典LR,FM, FFM模型,这些经典模型后续也作为组件用于各个深度模型.模型分别用自定义Keras Layer和estimator来实现,哈哈一个是 ...

随机推荐

  1. 带你简单了解Chatgpt背后的秘密:大语言模型所需要条件(数据算法算力)以及其当前阶段的缺点局限性

    带你简单了解Chatgpt背后的秘密:大语言模型所需要条件(数据算法算力)以及其当前阶段的缺点局限性 1.什么是语言模型? 大家或多或少都听过 ChatGPT 是一个 LLMs,那 LLMs 是什么? ...

  2. 代码打包的可视化数据分析图: webpack-bundle-analyzer 的使用

    先看webpack-bundle-analyzer的效果图(官方效果图): 通过使用webpack-bundle-analyzer可以看到项目各模块的大小,可以按需优化 1.先安装 npm insta ...

  3. vue全家桶进阶之路20:ECMAScript脚本语言规范

    ECMAScript(简称 ES)是一种由 Ecma 国际组织定义的脚本语言标准,它定义了 JavaScript 语言的基本规范和特性.JavaScript 是一种基于 ECMAScript 标准的编 ...

  4. drf——restful规范、序列化反序列化、drf介绍和快速使用、drf之APIView源码

    1.restful规范 # restful是一种定义API接口的设计风格,API接口的编写规范,尤其适用于前后端分离的应用模式中 这种风格的理念人为后端开发任务就是提供数据的,对外提供的是数据资源的访 ...

  5. bugku_EasyMath

    bugku_EasyMath 题目描述 简单的数学题 from Crypto.Util.number import getPrime, bytes_to_long from secret import ...

  6. Vue自定义指令-让你的业务开发更简单

    1.使用场景 在日常开发中,我们会将重复代码抽象为一个函数或者组件,然后在需要时调用或者引入.但是,对于某些功能,这种方法可能不够优雅或者不够灵活.例如,我们可能需要在DOM元素上添加一些自定义属性或 ...

  7. CKS 考试题整理 (16)-Pod安全策略

    Task 创建一个名为restrict-policy的新的PodSecurityPolicy,以防止特权Pod的创建. 创建一个名为restrict-access-role并使用新创建的PodSecu ...

  8. Journal of Electronic Imaging投稿分享

    Journal of Electronic Imaging投稿分享 在研究生阶段中的第一篇论文,前后总共三个月,还是很开心的!!! 附下中稿图片 这个期刊从二月份开始投的,然后三月份给了大修,大修时间 ...

  9. 聊聊Zookeeper的Session会话超时重连

    概述 简单地说,ZooKeeper的连接与会话就是客户端通过实例化ZooKeeper对象来实现客户端与服务器创建并保持TCP连接的过程.本质上,Session就是一个TCP 长连接. 会话 Sessi ...

  10. 前端Vue自定义询问弹框和输入弹框

    前端Vue自定义询问弹框和输入弹框, 下载完整代码请访问uni-app插件市场地址:https://ext.dcloud.net.cn/plugin?id=13119 效果图如下: 使用方法 < ...