http://www.lydsy.com/JudgeOnline/problem.php?id=3124 (题目链接)

题意

  求树的直径以及直径的交。

Solution

  我的想法超麻烦,经供参考。。思路还是蛮简单的,就是细节实在是。。。写的我眼泪掉下来。

  首先直径很好求,2遍dfs,顺便求出点x儿子节点中的最长链f[x][0],次长链f[x][1]。

  考虑如何求直径的交。

  对于一条边(u,v),如果它是直径的交,当且仅当所有的直径都经过u,所有的直径都经过v,u的最长链+v的最长链+(u,v)=直径长度。

  所以考虑如何求出数组b[x],表示x节点是否被所有直径经过。大家可以自行脑补,我已经不知道自己是怎么AC的了。。

细节

  too much。

代码

// bzoj3124
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=200010;
struct edge {int to,next,w;}e[maxn<<1];
int head[maxn],son[maxn][2],sum[maxn][2],b[maxn],vis[maxn],cnt,n,tot,rt;
LL f[maxn][3],ans; void link(int u,int v,int w) {
e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){u,head[v],w};head[v]=cnt;
}
void dfs(int x,int fa,LL d) {
if (ans<d) ans=d,rt=x;
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa) {
dfs(e[i].to,x,d+e[i].w);
if (f[x][0]<f[e[i].to][0]+e[i].w) {
f[x][1]=f[x][0],f[x][0]=f[e[i].to][0]+e[i].w;
son[x][1]=son[x][0],son[x][0]=e[i].to;
sum[x][1]=sum[x][0],sum[x][0]=0;
}
else if (f[x][1]<f[e[i].to][0]+e[i].w) {
son[x][1]=e[i].to;f[x][1]=f[e[i].to][0]+e[i].w;
sum[x][1]=0;
}
if (f[x][0]==f[e[i].to][0]+e[i].w) sum[x][0]++;
if (f[x][1]==f[e[i].to][0]+e[i].w) sum[x][1]++;
}
}
bool Dfs(int x,int fa,LL d) {
f[x][2]=d;
int flag=1,val=b[x],count=0,p;
if (f[x][0]+f[x][1]==ans) flag=0;
val&=flag;
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa) {
b[e[i].to]=b[x];
if (e[i].to!=son[x][0] && e[i].to!=son[x][1]) b[e[i].to]=val;
else {
if (son[x][0]==e[i].to && sum[x][0]>2) b[e[i].to]=val;
if (son[x][1]==e[i].to && sum[x][1]>1+(f[x][0]==f[x][1])) b[e[i].to]=val;
}
if (f[x][son[x][0]==e[i].to]+f[x][2]==ans) b[e[i].to]=0;
int tmp=Dfs(e[i].to,x,max(f[x][son[x][0]==e[i].to],f[x][2])+e[i].w);
if (!tmp) count++,p=e[i].to;
b[x]&=tmp;flag&=tmp;
}
if (count>1)
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa && b[e[i].to]) {
b[e[i].to]=0;
Dfs(e[i].to,x,max(f[x][son[x][0]==e[i].to],f[x][2])+e[i].w);
}
if (count==1)
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa && b[e[i].to] && e[i].to!=p) {
b[e[i].to]=0;
Dfs(e[i].to,x,max(f[x][son[x][0]==e[i].to],f[x][2])+e[i].w);
}
return flag;
}
void dp(int x,int fa) {
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa) {
dp(e[i].to,x);
if (max(f[x][son[x][0]==e[i].to],f[x][2])+e[i].w+f[e[i].to][0]==ans)
if (b[e[i].to] && b[x])
tot++;
}
}
int main() {
scanf("%d",&n);
for (int u,v,w,i=1;i<n;i++) {
scanf("%d%d%d",&u,&v,&w);
link(u,v,w);
}
dfs(1,0,0);dfs(rt,0,0);
memset(f,0,sizeof(f));
memset(son,0,sizeof(son));
dfs(1,0,0);
printf("%lld\n",ans);
for (int i=1;i<=n;i++) b[i]=1;
Dfs(1,0,0);
dp(1,0);
printf("%d",tot);
return 0;
}

【bzoj3124】 Sdoi2013—直径的更多相关文章

  1. bzoj3124: [Sdoi2013]直径 树形dp two points

    题目链接 bzoj3124: [Sdoi2013]直径 题解 发现所有直径都经过的边 一定在一条直径上,并且是连续的 在一条直径上找这段区间的两个就好了 代码 #include<map> ...

  2. bzoj千题计划134:bzoj3124: [Sdoi2013]直径

    http://www.lydsy.com/JudgeOnline/problem.php?id=3124 第一问: dfs1.dfs2 dfs2中记录dis[i]表示点i距离最长链左端点的距离 第二问 ...

  3. BZOJ3124 SDOI2013直径

    本以为必有高论,结果是个思博题.随便找一条直径,最后答案肯定是这条直径上的连续一段,如果某分支长度等于直径上某端的长度这一端都要被剪掉. #include<iostream> #inclu ...

  4. [bzoj3124] [Sdoi2013]直径

    看了child学长的题解才知道怎么写TAT http://www.cnblogs.com/ctlchild/p/5160272.html 以前不知道直径都是过重心的..代码改着改着就和标程完全一样了Q ...

  5. 2018.11.05 bzoj3124: [Sdoi2013]直径(树形dp)

    传送门 一道sbsbsb树形dpdpdp 第一问直接求树的直径. 考虑第二问问的边肯定在同一条直径上均是连续的. 因此我们将直径记下来. 然后对于直径上的每一个点,dpdpdp出以这个点为根的子树中不 ...

  6. BZOJ3124 [Sdoi2013]直径 【树的直径】

    题目 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节点,可以证明其有且仅有N-1 条边. 路径:一棵树上,任意两个节 ...

  7. BZOJ3124: [Sdoi2013]直径 (树形DP)

    题意:给一颗树 第一问求直径 第二问求有多少条边是所有直径都含有的 题解:求直径就不说了 解第二问需要自己摸索出一些性质 任意记录一条直径后 跑这条直径的每一个点  如果以这个点不经过直径能到达最远的 ...

  8. 【BZOJ3124】[Sdoi2013]直径 树形DP(不用结论)

    [BZOJ3124][Sdoi2013]直径 Description 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节 ...

  9. [洛谷P3304] [SDOI2013]直径

    洛谷题目链接:[SDOI2013]直径 题目描述 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节点,可以证明其有且仅 ...

  10. 3124: [Sdoi2013]直径

    3124: [Sdoi2013]直径 https://www.lydsy.com/JudgeOnline/problem.php?id=3124 分析: 所有直径都经过的边,一定都是连续的一段.(画个 ...

随机推荐

  1. Android Bitmap占用内存计算公式

    Android对各分辨率的定义 当图片以格式ARGB_8888存储时的计算方式 占用内存=图片长*图片宽*4字节 图片长 = 图片原始长 (设备DPI/文件夹DPI)  图片宽 = 图片原始宽(设备D ...

  2. 比Ansible更吊的自动化运维工具,自动化统一安装部署_自动化部署udeploy 1.0

    新增功能: 2015-03-11 除pass(备份与更新)与start(启动服务)外,实现一切自动化. 注:pass与start设为业务类,由于各类业务不同,所以无法实现自动化.同类业务除外,如更新的 ...

  3. 敏捷遇上UML-需求分析及软件设计最佳实践(郑州站 2014-6-7)

      邀请函: 尊敬的阁下:我们将在郑州为您奉献高端知识大餐,当敏捷遇上UML,会发生怎样的化学作用呢?首席专家张老师将会为您分享需求分析及软件设计方面的最佳实践,帮助您掌握敏捷.UML及两者相结合的实 ...

  4. MVC学习系列2--向Action方法传递参数

    首先,新建一个web项目,新建一个Home控制器,默认的代码如下: public class HomeController : Controller { // GET: Home public Act ...

  5. Windows on Device 项目实践 3 - 火焰报警器制作

    在前两篇<Windows on Device 项目实践 1 - PWM调光灯制作>和<Windows on Device 项目实践 2 - 感光灯制作>中,我们学习了如何利用I ...

  6. The process could not execute 'sp_repldone/sp_replcounters' on 'ServerName'

    昨天发现发布服务器S(SQL Server 2008 R2),出现大量如下错误 错误细节如下所示: Date :: PM :: PM) Source spid52 Message Replicatio ...

  7. 监控mysql各种选项

    安装mysql之后,需要对mysql服务进行监控.   nagios开源自带的check_mysql 对 mysql 的slave 机监控倒是不错.但是对数据库主机监控就略显不足了.   使用一个监控 ...

  8. Ubuntu 系统 update-rc.d 命令

    Ubuntu或者Debian系统中update-rc.d命令,是用来更新系统启动项的脚本.这些脚本的链接位于/etc/rcN.d/目录,对应脚本位于/etc/init.d/目录.在了解update-r ...

  9. git 常规使用小结

    总结下 git 的常规使用: 一般我们使用 git 来维护项目代码. 前提背景: 远程服务器上代码库,包含分支: 1.master - 版本发布分支 2.dev - 平时开发用的分支 一般操作流程: ...

  10. Linux下5种IO模型的小结

    概述 接触网络编程,我们时常会与各种与IO相关的概念打交道:同步(Synchronous).异步(ASynchronous).阻塞(blocking)和非阻塞(non-blocking).关于概念的区 ...