\(\mathbf{OGF}\) 的定义

对于一个序列 \(a_{1},a_{2},\cdots\),我们称:

\[G(x)=\sum_{i=0}^{\infty}a_{i}x^{i}
\]

为序列 \(a\) 的 \(\mathbf{OGF}\) 即普通生成函数 (\(\texttt{Ordinary Generating Function}\))。

同时因为我们不关心 \(x\) 的取值,因此 \(\sum_{i=1}^{+\infty}a_{i}x^{i}\) 又称作以 \(x\) 为自由元的形式幂级数。 -- 摘自 自为风月马前卒

一个例子

举个例子,序列:

\[\left(^{n}_{0}\right),\left(^{n}_{1}\right),\cdots,\left(^{n}_{n}\right)
\]

的 \(\mathbf{OGF}\) 为(二项式定理):

\[G(x)=(1+x)^{n}
\]

由等比数列求和公式,有一个常用的等式:

\[\sum_{i=0}^{\infty}x^{i}=\frac{1-x^{\infty}}{1-x}
\]

因为指数为 \(\infty\),所以 \(x^{\infty}\) 趋近于 \(0\),箭头方向随便打,因为我们并不关心 \(x\) 的取值。

\[\sum_{i=0}^{\infty}x^{i}=\frac{1}{1-x}
\]

这个等式还有一个重要的运用,我们把 \(x\) 替换成 \(kx\) 即可得:

\[\sum_{i=0}^{\infty}(kx)^{i}=\frac{1}{1-kx}
\]

后文的用 \(\mathbf{OGF}\) 求序列的通项公式里面这个东西很有用的。

\(\texttt{Fibonacci}\) 序列的生成函数求法

定义一个序列

\[F_{i}=\begin{cases}
1,i\in[0,1] \\
\displaystyle
F_{i-1}+F_{i-2},i\in[2,\infty)
\end{cases}
\]

则我们称 \(F\) 为 \(\texttt{Fibonacci}\) 序列。

接下来我们来推导其生成函数:

\[\begin{aligned}
G(x)&=\sum_{i=0}^{\infty}F_{i}x^{i} \\
G(x)&=1+x+2x^{2}+3x^{3}+\cdots \\
xG(x)&=x+x^{2}+2x^{3}+3x^{4}+\cdots \\
x^{2}G(x)&=x^{2}+x^{3}+2x^{4}+3x^{5}+\cdots
\end{aligned}
\]

这里运用初中数学中经常用的到错位相减这一小技巧,可得

\[G(x)-xG(x)-x^{2}G(x)=1
\]

即可得

\[G(x)=\frac{1}{1-x-x^{2}}
\]

至此,我们已经求出了 \(\texttt{Fibonacci}\) 序列的 \(\mathbf{OGF}\) 了。

利用生成函数求数列通项

以前文提到的 \(\texttt{Fibonacci}\) 为例。

首先我们知道其 \(\mathbf{OGF}\) 为:

\[G(x)=\frac{1}{1-x-x^{2}}
\]

待定系数一下分母我们就可以得到:

\[G(x)=\frac{1}{(1-\frac{1+\sqrt{5}}{2}x)(1-\frac{1-\sqrt{5}}{2}x)}
\]

后面的还没推出来,咕了

Note -「普通生成函数 OGF」的更多相关文章

  1. Note -「圆方树」学习笔记

    目录 圆方树的定义 圆方树的构造 实现 细节 圆方树的运用 「BZOJ 3331」压力 「洛谷 P4320」道路相遇 「APIO 2018」「洛谷 P4630」铁人两项 「CF 487E」Touris ...

  2. Note -「Dijkstra 求解 MCMF」

    食用前请先了解 SPFA + Dinic/EK 求解 MCMF. Sol. 总所周知,SPFA 牺牲了.于是我们寻求一些更稳定的算法求解 MCMF. 网络流算法的时间属于玄学,暂且判定为混乱中的稳定. ...

  3. Note -「Dsu On Tree」学习笔记

    前置芝士 树连剖分及其思想,以及优化时间复杂度的原理. 讲个笑话这个东西其实和 Dsu(并查集)没什么关系. 算法本身 Dsu On Tree,一下简称 DOT,常用于解决子树间的信息合并问题. 其实 ...

  4. Note -「矩阵树定理」学习笔记

      大概--会很简洁吧 qwq. 矩阵树定理   对于无自环无向图 \(G=(V,E)\),令其度数矩阵 \(D\),邻接矩阵 \(A\),令该图的 \(\text{Kirchhoff}\) 矩阵 \ ...

  5. Note -「狄利克雷前缀和」

    学到一个诡异东西,当个 Trick 处理用吧. 现在有一个形如 \(\sum \limits _{i = 1} ^{n} \sum \limits _{d | i} f(d)\) 的柿子,不难发现可以 ...

  6. Note -「多项式」基础模板(FFT/NTT/多模 NTT)光速入门

      进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(I ...

  7. Note -「Lagrange 插值」学习笔记

    目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 ...

  8. Note -「动态 DP」学习笔记

    目录 「CF 750E」New Year and Old Subsequence 「洛谷 P4719」「模板」"动态 DP" & 动态树分治 「洛谷 P6021」洪水 「S ...

  9. Note -「Mobius 反演」光速入门

    目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...

  10. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

随机推荐

  1. C温故补缺(十八):网络编程

    计算机网络 参考:TCP三次握手详解. OSI模型 简单分层: 其中,链路层还可以分出物理层和数据链路层.应用层可以分出会话层,表示层和应用层. 七层模型: 链路层:只是物理的比特流和简单封装的数据帧 ...

  2. 如何制作 Storybook Day 网页上的 3D 效果?

    Storybook 刚刚达到了一个重要的里程牌:7.0 版本!为了庆祝,该团队举办了他们的第一次用户大会 - Storybook Day.为了更特别,在活动页面中添加了一个视觉上令人惊叹的 3D 插图 ...

  3. .NET指定图片地址下载并转换Base64字符串

    需求描述 需要调用第三方图片上传接口上传图片,对方图片格式只能接收Base64字符串.所以我们需要将系统服务器的图片通过Url下载下来,然后转换成Base64字符串.接下来我们将使用HttpClien ...

  4. 【Leetcode】 # 20 有效的括号 Rust Solution About Rust Stack implement

    给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效.有效字符串需满足:    左括号必须用相同类型的右括号闭合.    左括号必须以正确的顺序闭合.注意空字符 ...

  5. Hello Welcome to my blog!

    Hello Welcome to my blog!

  6. 一文了解Go语言的函数

    1. 引言 函数是编程中不可或缺的组成部分,无论是在Go语言还是其他编程语言中,函数都扮演着重要的角色.函数能够将一系列的操作封装在一起,使得代码更加模块化.可重用和易于维护. 在本文中,我们将详细介 ...

  7. 前端vue自定义简单实用下拉筛选 下拉菜单

    前端vue自定义简单实用下拉筛选 下拉菜单, 下载完整代码请访问: https://ext.dcloud.net.cn/plugin?id=13020 效果图如下:     #### 使用方法 ``` ...

  8. Dash应用页面整体布局技巧

    本文示例代码已上传至我的Github仓库:https://github.com/CNFeffery/dash-master 大家好我是费老师,对于刚上手dash应用开发的新手朋友来说,如何进行合理且美 ...

  9. asp.net程序通过Microsoft Azure令牌授予流获取UserInfo终结点实现单点登录--隐式授予流(OIDC协议)

    1. Microsoft Azure令牌授予流 令牌授予流种类如下: 本章节采用: 隐式授予流: 2. 隐式授予流的实现 流程:重定向到authorize--->拿到access_token-- ...

  10. 基于python+django的宠物商店-宠物管理系统设计与实现

    该系统是基于python+django开发的宠物商店-宠物管理系统.是给师妹开发的课程作业.现将源码开放给大家.大家学习过程中,如遇问题可以在github咨询作者. 演示地址 前台地址: http:/ ...