SMU Autumn 2023 Round 1(Div.1)
SMU Autumn 2023 Round 1(Div.1)
A. Set or Decrease(枚举)
题意就是你可以进行两种操作,将\(a_i-1\)或者令\(a_i\)等于\(a_j\),然后使得\(\sum\limits_{i=1}^{n}a_i \leq k\),求最少的操作步数
首先我们让一个大数变成一个最小数的贡献肯定是要比让大数减一产生的贡献更多,所以我们可以排序后去枚举将后面\(i\)个数变成最小数后得到的和\(Sum\)来与\(k\)比较,求和可以用前面\((n-i-1)\)个数的前缀和加上后面\(i\)个最小数,即\(a_0\),如果这个和仍然大于\(k\),那我们就要执行减一操作了,因为后面的大数都等于最小数了,所以这个减一操作也是只有最小数减一才能贡献最大,至于要减多少,那就是\(\lceil \frac{Sum-k}{i} \rceil\),即将这个差值平均分到后面的\(i\)个数中,且\(Sum \leq k\),所以我们一定得向上取整,每次的步数即\(i+\lceil \frac{Sum-k}{i} \rceil\),然后取最小值即可
#include <bits/stdc++.h>
#define int long long
#define debug(a) cout<<#a<<"="<<a<<'\n';
using namespace std;
void solve() {
int n, k;
cin >> n >> k;
vector<int> a(n);
for (auto &i : a)
cin >> i;
sort(a.begin(), a.end());
vector<int> num(n);
num[0] = a[0];
for(int i = 1;i < n;i ++)
num[i] = num[i - 1] + a[i];
int ans = 1e15;
for(int i = 0;i < n;i ++){
int s = num[n - i - 1] + a[0] * i;
int t = i;
if(s > k){
t += (s - k + i) / (i + 1);
}
ans = min(ans, t);
}
cout << ans << '\n';
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T;
cin >> T;
while (T--) {
solve();
}
return 0;
}
E. Exact Change(暴力枚举)
题意就是用面值为\(1,2,3\)的三种纸币去凑出\(n\)个数,且要让使用的纸币数最少
首先肯定是尽量的去使用面值为\(3\)的纸币,面值为\(1\)的最多使用\(1\)张,再多就可以用纸币\(2\)或\(3\)代替,纸币\(2\)最多使用\(2\)张,\(3\)张纸币\(2\)可以用\(2\)张纸币\(3\)代替,数据范围较小,可以直接去暴力枚举使用纸币\(1\)和纸币\(2\)的数量,然后去找出当使用\(i\)张纸币\(1,j\)张纸币\(2\)时使得所有数能凑出的纸币\(3\)最大所需要的数量\((res)\),则总使用张数为\((res + i+j)\),然后在枚举\(i,j\)的过程中判断一下最小值就行了
#include <bits/stdc++.h>
#define debug(a) cout<<#a<<"="<<a<<'\n';
using namespace std;
using i64 = long long;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T;
cin >> T;
while (T--) {
int n;
cin >> n;
vector<int> a(n);
for (auto &i : a) cin >> i;
i64 ans = INT_MAX;
for (int i = 0; i <= 1; i ++) {
for (int j = 0; j <= 2; j ++) {
i64 res = 0;
for (auto ai : a) {
i64 v3 = INT_MAX;
for (int x1 = 0; x1 <= i; x1 ++) {
for (int x2 = 0; x2 <= j; x2 ++) {
i64 ak = ai - x1 - 2 * x2;
if (ak >= 0 && ak % 3 == 0)
v3 = min(v3, ak / 3);
}
}
res = max(res, v3);
}
ans = min(ans, res + i + j);
}
}
cout << ans << '\n';
}
return 0;
}
F. Replace the Numbers(离线)
题意是给出两种操作,操作\(1\)是在序列后添加一个数,操作\(2\)是将序列中的\(x\)都替换成\(y\),问\(q\)次操作后的序列
可以发现的是,每一步操作\(2\)都会影响这一步之前的序列,如果暴力做的话就需要每次都循环一遍之前的序列,但如果我们反过来看,从最后一步往前的话,那么每一步操作\(2\)影响的就是之后的序列了,假设\(f_x \rightarrow x, f_y \rightarrow y\),遇到操作\(1\)的话,直接加上对应的值即可,遇到操作\(2\)的话,就要让\(f_x \rightarrow f_y\),而不能直接让\(f_x \rightarrow y\),因为\(y\)之后还可能已经变成其他值了,如\(f_y \rightarrow z\),那么这一步应该是\(f_x \rightarrow f_y \rightarrow z\),之后又遇到操作\(1\),直接加上\(f_x \rightarrow \dots \rightarrow z\)即可,因为是从后往前操作的,所以最后输出要倒序输出
#include <bits/stdc++.h>
#define debug(a) cout<<#a<<"="<<a<<'\n';
using namespace std;
using i64 = long long;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int q;
cin >> q;
vector<int> f(500005),opt(q + 1),x(q + 1),y(q + 1);
iota(f.begin(), f.end(),0);
for(int i = 1;i <= q;i ++){
cin >> opt[i];
if(opt[i] == 1)
cin >> x[i];
else
cin >> x[i] >> y[i];
}
vector<int> ans(q + 1);
int l = 0;
for(int i = q;i >= 1;i --){
if(opt[i] == 1)
ans[++l] = f[x[i]];
else
f[x[i]] = f[y[i]];
}
for(int i = l;i >= 1;i --)
cout << ans[i] << ' ';
return 0;
}
G. Triangles on a Rectangle
题意是给你一个矩形,然后四条边每条边至少有两个点,然后在这个矩形中选三个点使得组成的三角形面积最大
画个图其实就能看出了

就是找每条边上最远的两点和长或宽作为高组成的三角形最大的即可
#include <bits/stdc++.h>
#define int long long
using namespace std;
void solve() {
int w, h;
cin >> w >> h;
int ans = 0;
int k, x;
cin >> k;
int ma = 0, mi = 1e7;
for (int i = 0; i < k; i ++) {
cin >> x;
mi = min(x, mi);
ma = max(ma, x);
}
ans = (ma - mi) * h;
cin >> k;
ma = 0, mi = 1e7;
for (int i = 0; i < k; i ++) {
cin >> x;
mi = min(x, mi);
ma = max(ma, x);
}
ans = max(ans, (ma - mi) * h);
cin >> k;
ma = 0, mi = 1e7;
for (int i = 0; i < k; i ++) {
cin >> x;
mi = min(x, mi);
ma = max(ma, x);
}
ans = max(ans, (ma - mi) * w);
cin >> k;
ma = 0, mi = 1e7;
for (int i = 0; i < k; i ++) {
cin >> x;
mi = min(x, mi);
ma = max(ma, x);
}
ans = max(ans, (ma - mi) * w);
cout << ans << '\n';
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T;
cin >> T;
while (T--) {
solve();
}
return 0;
}
SMU Autumn 2023 Round 1(Div.1)的更多相关文章
- Codeforces Round #845 (Div. 2) and ByteRace 2023 A-D
Codeforces Round #845 (Div. 2) and ByteRace 2023 A-D A. Everybody Likes Good Arrays! 题意:对给定数组进行操作:删除 ...
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- Codeforces Round #279 (Div. 2) ABCDE
Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name A Team Olympiad standard input/outpu ...
- Codeforces Round #262 (Div. 2) 1003
Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...
- Codeforces Round #262 (Div. 2) 1004
Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...
- Codeforces Round #371 (Div. 1)
A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...
- Codeforces Round #268 (Div. 2) ABCD
CF469 Codeforces Round #268 (Div. 2) http://codeforces.com/contest/469 开学了,时间少,水题就不写题解了,不水的题也不写这么详细了 ...
随机推荐
- 详解Web应用安全系列(1)注入漏洞之SQL注入
注入漏洞通常是指在可输入参数的地方,通过构造恶意代码,进而威胁应用安全和数据库安全.常见的注入漏洞包括:SQL注入和XSS跨站脚本攻击. 这篇文章我们主要讲SQL注入,SQL注入即是指web应用程序对 ...
- Linux信号量
查看信号量 [root@localhost ~]# kill -l 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP 6) SIGABRT 7) ...
- 12-Python数据库访问
在CentOS7上安装Mariadb https://blog.csdn.net/NetRookieX/article/details/104734181 常用的增删改查 show databases ...
- 05-CentOS防火墙
概述 CentOS中的防火墙有很多,如SELinux.Firewall.TCP Wrappers.iptables/netfilter. 每种防火墙都有各自擅长的地方. 这里主要讲两种:SELinux ...
- 【资料分享】全志科技T507工业核心板硬件说明书(上)
目 录 前言 1硬件资源 1.1CPU 1.2ROM 1.3RAM 1.4时钟系统 1.5电源 1.6LED 1.7外设资源 2引脚说明 2.1引脚排列 2.2引脚定义 2.3内部引脚使用说明 ...
- Java高效率查询Mysql节点树数据
示例 目前有一个功能:任务计划管理,必然存在多级子任务的父子级关系,每个任务还会存在其它数据的关联表. mysql无法一次性递归查出想要的数据结构,想必很多人都会是通过根目录递归查询数据库的方式查出树 ...
- koa web框架入门
1.在hello-koa这个目录下创建一个package.json,这个文件描述了我们的hello-koa工程会用到哪些包.完整的文件内容如下: { "name": "h ...
- VirtualBox Ubuntu 22.04 Server联网、与主机互联
使用 VirtualBox 7.0安装了两个Ubuntu 22.04 Server虚拟机,想要实现: 主机与虚拟机互联 虚拟机之间互联,且互联的IP应为静态 虚拟机可以联网 解决方法 每个虚拟机配置两 ...
- FFmpeg开发笔记(三十八)APP如何访问SRS推流的RTMP直播地址
<FFmpeg开发实战:从零基础到短视频上线>一书在第10章介绍了轻量级流媒体服务器MediaMTX,通过该工具可以测试RTSP/RTMP等流媒体协议的推拉流.不过MediaMTX的功能 ...
- 【进阶篇】一文搞清楚网页发起 HTTP 请求调用的完整过程
目录 前言 一.HTTP协议 1.1基本概念 1.2工作原理 二.请求过程 2.1域名解析 2.2TCP 连接 2.3发送 HTTP 请求 2.4服务器应答 2.5响应内容 2.6关闭连接 三.客户端 ...