在分析学中,Dirichlet 积分 是如下形式的 无穷限积分

\[\int_{0}^{+\infty} \frac{\sin x}{x} \mathrm{~d} x
\]

它是条件收敛的,且收敛到 \(\frac{\pi}{2}\) 该问题是在研究数学摆的阻尼振动模型中引出的。对它的求解可依靠经典的分析方法或留数理论进行。

函数 \(f(x) =\frac{\sin x}{x}\) 的不定积分是没有初等表示方法的,因此上述积分不能通过一般的原函数法来求解。

推广

设常数 \(a, b \in \mathbb{R}, a \neq 0\) ,那么有

\[\int_{0}^{+\infty} \frac{\sin b x}{x \mathrm{e}^{a x}} \mathrm{~d} x=\arctan \frac{b}{a}
\]

相关问题

  1. 函数 \(y =\frac{\sin x}{x}\) 是二阶齐次线性常微分方程
\[y^{\prime \prime}+\frac{2}{x} y^{\prime}+y=0
\]

的一个特解,其通解为

  1. 二次积分
\[I=\int_{0}^{1} \mathrm{~d} y \int_{x^{2}}^{1} \frac{y \sin x}{x} \mathrm{~d} x
\]

作为 \(\frac{y\sin x}{x}\) 的二重积分时表示的积分区域

\[D=\left\{0 \leqslant y \leqslant 1, y^{2} \leqslant x \leqslant 1\right\}=\{0 \leqslant x \leqslant 1,0 \leqslant y \leqslant \sqrt{x}\}
\]

于是上述积分

\[I=\int_{0}^{1} \mathrm{~d} x \int_{0}^{\sqrt{x}} \frac{y \sin x}{x} \mathrm{~d} y=\int_{0}^{1}\left(\left.\frac{1}{2} \frac{\sin x}{x} y^{2}\right|_{0} ^{\sqrt{x}}\right) \mathrm{d} x=\frac{1-\cos 1}{2} .
\]
  1. \[\lim _{n \rightarrow \infty} \prod_{n=1}^{n} \cos \frac{x}{2^{n}}=\frac{\sin x}{x}
    \]
  2. 使用分部积分法可以得到 \(\int_{0}^{+\infty}\left(\frac{\sin x}{x}\right)^{2} \mathrm{~d} x=\frac{\pi}{2}\)

参见

高数 | Dirichlet 积分的更多相关文章

  1. 期权定价公式:BS公式推导——从高数和概率论角度

    嗯,自己看了下书.做了点笔记,做了一些相关的基础知识的补充,尽力做到了详细,这样子,应该上过本科的孩子,只要有高数和概率论基础.都能看懂整个BS公式的推导和避开BS随机微分方程求解的方式的证明了.

  2. Contest 高数题 樹的點分治 樹形DP

    高数题 HJA最近在刷高数题,他遇到了这样一道高数题.这道高数题里面有一棵N个点的树,树上每个点有点权,每条边有颜色.一条路径的权值是这条路径上所有点的点权和,一条合法的路径需要满足该路径上任意相邻的 ...

  3. linux 服务器所支持的最大句柄数调高数倍(与服务器的内存数量相关)

    https://github.com/alibaba/p3c/blob/master/阿里巴巴Java开发手册(详尽版).pdf 2. [推荐]调大服务器所支持的最大文件句柄数(File Descri ...

  4. 又是一年NOIP然鹅我考的是高数(虽然我没打并且内容与NOIP无关)(手动滑稽)

    好长时间没有写过总结了.也是高三结束,自招结束.成功的由国宝变为四害,整个人也是完全放松的,或者说是放肆的. 整个暑假都是游戏睡觉,游戏睡觉,也没有干什么有意义的事.有人说别人都在学习大一课程的时候我 ...

  5. [动态规划]高数Umaru系列(9)——哈士奇(背包问题)

    高数Umaru系列(9)——哈士奇 http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Index/problemdetail/pid/3358.ht ...

  6. 高数解题神器:拍照上传就出答案,这个中国学霸做的AI厉害了 | Demo

    一位叫Roger的中国学霸小哥的拍照做题程序mathAI一下子火了,这个AI,堪称数学解题神器. 输入一张包含手写数学题的图片,AI就能识别出输入的数学公式,然后给出计算结果. 不仅加减乘除基本运算, ...

  7. C语言之:结构体动态分配内存(利用结构体数组保存不超过10个学生的信息,每个学生的信息包括:学号、姓名和三门课(高数、物理和英语 )的成绩和平均分(整型)。)

    题目内容: 利用结构体数组保存不超过10个学生的信息,每个学生的信息包括:学号.姓名和三门课(高数.物理和英语 )的成绩和平均分(整型). 编写程序,从键盘输入学生的人数,然后依次输入每个学生的学号. ...

  8. [数学]高数部分-Part VI 重积分

    Part VI 重积分 回到总目录 Part VI 重积分 二重积分的普通对称性 二重积分的轮换对称性(直角坐标系下) 二重积分直角坐标系下的积分方法 二重积分极坐标系下的积分方法 二重积分中值定理 ...

  9. hdu 4870 Rating(可能性DP&高数消除)

    Rating Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  10. 我的CSDN原创高质量免积分下载资源列表(持续更新)

    最近几个月,我在CSDN平台,发表了大量原创高质量的项目,并给出了相应的源码.文档等相关资源. 为了方便CSDN用户或潜在需求者,下载到自己想要的资源,特分类整理出来,欢迎大家下载. 我的原则:原创高 ...

随机推荐

  1. Unity学习笔记--数据持久化之PlayerPrefs的使用

    数据持久化 PlayerPrefs相关 PlayerPrefs是Unity游戏引擎中的一个类,用于在游戏中存储和访问玩家的偏好设置和数据.它可以用来保存玩家的游戏进度.设置选项.最高分数等信息.Pla ...

  2. LabVIEW基于机器视觉的实验室设备管理系统(2)

    目录 功能计划 普通用户 欢迎登录 信息查询 返回退出程序 效果演示 在前期的准备完成之后呢,就要开始实现我们的程序啦,不过在编程之前,我们一定要计划好这个系统需要什么功能. 功能计划 既然我们做的是 ...

  3. 给大家介绍一款强大的抓包代理工具--mitmproxy

    最近工作中涉及到和app相关的测试工作,需要用到mock,特意网上查了些资料,发现有很多工具可以实现app的mock,但是经过我反复试用后,发现mitmproxy这个工具非常的强大 我认为mitmpr ...

  4. LOG日志系统

    # coding=utf-8 import datetime import logging import os import sys from logging.handlers import Time ...

  5. [P7880][Ynoi2006] rldcot

    [Ynoi2006] rldcot 题目描述 给定一棵 \(n\) 个节点的树,树根为 \(1\),每个点有一个编号,每条边有一个边权. 定义 \(dep(x)\) 表示一个点到根简单路径上边权的和, ...

  6. LR(0)分析法

    LR(0)是一种自底向上的语法分析方法.两个基本动作是移进和规约. 具体例子如下 已知文法G[E] (1) E→aА (2) E→bB (3) A→cА (4) A→d (5) B→cB (6) B→ ...

  7. lca 学习笔记

    定义 最近公共祖先简称 \(LCA\) 两个节点的最近公共祖先,就是这两个点的公共祖先里,离根最远的的那个 为了方便,我们记某点集 \(S={v1,v2,...,vn}\) 的最近公共祖先为 \(LC ...

  8. 支付宝 v3 验签如何实现

    上次给大家介绍了 支付宝 v3 自签名如何实现,这次顺便再把验签也写一下. 为什么要验签 说起为什么要验签,如果要详细一点解释的话,可以写很多很多...... 我们就简单一点来解释:验签可以证明接收到 ...

  9. ElasticSearch之Clone index API

    使用已有的索引,复制得到一个索引. 关闭testindex_001的写入操作,命令样例如下: curl -X PUT "https://localhost:9200/testindex_00 ...

  10. 神经网络优化篇:详解神经网络的权重初始化(Weight Initialization for Deep NetworksVanishing / Exploding gradients)

    神经网络的权重初始化 这是一个神经单元初始化地例子,然后再演变到整个深度网络. 来看看只有一个神经元的情况,然后才是深度网络. 单个神经元可能有4个输入特征,从\(x_{1}\)到\(x_{4}\), ...