比赛链接:Here

1543A. Exciting Bets

math,

给定两个数字 \(a,b (a,b \le 1e18)\) 和以下两种操作:

  • \(a + 1,b+1\)
  • \(a-1,b-1\ if\ a > 0\) 并且 $ b > 0$

请问经过最少多少次操作能使得 \(GCD(a,b)\) 最大化

注意:\(GCD(x,0)=x\)

输出 \(max(GCD(a,b)),min(cnt)\)


  • 如果 \(a = b\) 那么直接输出 \(0,0\)
  • 否则,能获得的最大 \(GCD(a,b) = |a-b|\) ,对于实现次数为 \(min(a\ mod\ g,g - a\ mod\ g)\)

【AC Code】

int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
ll a, b;
cin >> a >> b;
if (a == b)cout << "0 0\n";
else {
ll g = abs(a - b);
ll m = min(a % g, g - a % g);
cout << g << " " << m << "\n";
}
}
}

1543B. Customising the Track

给定数组 \(a\) ,给定以下操作:

可以把任意值的 \(a_i\) 转移给 \(a_j\)

求最小化 \(\sum\limits_{i = 1}^n\sum\limits_{j = i + 1}^n|a_i-a_j|\)


要最小化 \(\sum\limits_{i = 1}^n\sum\limits_{j = i + 1}^n|a_i-a_j|\) ,简单贪 \(a_i = a_j\)

如果 数组数值总和不能平均分配则把不能平均分配的数都化 1

【AC Code】

int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
int n; cin >> n;
ll sum = 0;
for (int i = 0; i < n; ++i) {
ll x; cin >> x;
sum += x;
}
ll t = sum / n, tt = sum % n;
cout << sum % n * (n - (sum - t * n)) << "\n";
}
}

1543C. Need for Pink Slips

(题意太长,翻译不过来)


精度!精度!还是精度!

能用long double就不用 double

【AC Code】

using ld = long double;

const ld eps = 1e-9;
const ld scale = 1e+6; ld solve(int c, int m, int p, int v) {
ld ans = p / scale;
if (c > 0) {
if (c > v) {
if (m > 0) ans += (c / scale) * (1 + solve(c - v, m + v / 2, p + v / 2, v));
else ans += (c / scale) * (1 + solve(c - v, 0, p + v, v));
} else {
if (m > 0) ans += (c / scale) * (1 + solve(0, m + c / 2, p + c / 2, v));
else ans += (c / scale) * (1 + solve(0, 0, p + c, v));
}
} if (m > 0) {
if (m > v) {
if (c > 0) ans += (m / scale) * (1 + solve(c + v / 2, m - v, p + v / 2, v));
else ans += (m / scale) * (1 + solve(0, m - v, p + v, v));
} else {
if ( c > 0) ans += (m / scale) * (1 + solve(c + m / 2, 0, p + m / 2, v));
else ans += (m / scale) * (1 + solve(0, 0, p + m, v));
}
}
return ans;
} int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
ld cd, md, pd, vd;
cin >> cd >> md >> pd >> vd;
int c = round(cd * scale);
int m = round(md * scale);
int p = round(pd * scale);
int v = round(vd * scale);
ld ans = solve(c, m, p, v);
cout << setprecision(12) << fixed << ans << "\n";
}
}

1543D1. RPD and Rap Sheet (Easy Version)

(说实话,没看懂这题;

赛后学习一下 Pecco神 的代码

【AC Code】

int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
int n, x, s = 0;
cin >> n >> x;
for (int i = 0; i < n; ++i) {
int y = (i ^ s), ok;
cout << y << "\n"
<< flush;
cin >> ok;
if (ok) break;
s ^= y;
}
}
}

Codeforces Round #730 (Div. 2) A~D题个人题解的更多相关文章

  1. Codeforces Round #609 (Div. 2)前五题题解

    Codeforces Round #609 (Div. 2)前五题题解 补题补题…… C题写挂了好几个次,最后一题看了好久题解才懂……我太迟钝了…… 然后因为longlong调了半个小时…… A.Eq ...

  2. Codeforces Round #310 (Div. 2)--A(简单题)

    http://codeforces.com/problemset/problem/556/A 题意:给一个01字符串,把所有相邻的0和1去掉,问还剩下几个0和1. 题解:统计所有的0有多少个,1有多少 ...

  3. Codeforces Round #416 (Div. 2)(A,思维题,暴力,B,思维题,暴力)

    A. Vladik and Courtesy time limit per test:2 seconds memory limit per test:256 megabytes input:stand ...

  4. Codeforces Round #336 (Div. 2)-608A.水题 608B.前缀和

    A题和B题...   A. Saitama Destroys Hotel time limit per test 1 second memory limit per test 256 megabyte ...

  5. Codeforces Round #316 (Div. 2) (ABC题)

    A - Elections 题意: 每一场城市选举的结果,第一关键字是票数(降序),第二关键字是序号(升序),第一位获得胜利. 最后的选举结果,第一关键字是获胜城市数(降序),第二关键字是序号(升序) ...

  6. Codeforces Round #590 (Div. 3)【D题:26棵树状数组维护字符出现次数】

    A题 题意:给你 n 个数 , 你需要改变这些数使得这 n 个数的值相等 , 并且要求改变后所有数的和需大于等于原来的所有数字的和 , 然后输出满足题意且改变后最小的数值. AC代码: #includ ...

  7. Codeforces Round #590 (Div. 3)【D题:维护26棵树状数组【好题】】

    A题 题意:给你 n 个数 , 你需要改变这些数使得这 n 个数的值相等 , 并且要求改变后所有数的和需大于等于原来的所有数字的和 , 然后输出满足题意且改变后最小的数值. AC代码: #includ ...

  8. Codeforces Round #599 (Div. 2)的简单题题解

    难题不会啊…… 我感觉写这个的原因就是因为……无聊要给大家翻译题面 A. Maximum Square 简单题意: 有$n$条长为$a_i$,宽为1的木板,现在你可以随便抽几个拼在一起,然后你要从这一 ...

  9. A. Yellow Cards ( Codeforces Round #585 (Div. 2) 思维水题

    ---恢复内容开始--- output standard output The final match of the Berland Football Cup has been held recent ...

  10. Codeforces Round #525 (Div. 2)后俩题

    E:https://codeforces.com/contest/1088/problem/E dp+贪心 题目大意:选择一个k并且选择k个连通块,要求sigma a[i]/k最大,k尽量大,对于给定 ...

随机推荐

  1. 逻辑回归(Logistic Regression) ----转载

    概要: 1. 介绍Logistic Regression的数学模型,推导并详细解释求解最优回归系数的过程:2. Python实现Logistic Regression的基本版:3. 介绍sklearn ...

  2. 用友NCC产品API使用指南

    轻易云用友NCC产品API集成专题 open api简介 Open API即开放API,也称开放平台. 所谓的开放API(OpenAPI)是服务型网站常见的一种应用,网站的服务商将自己的网站服务封装成 ...

  3. Mock基础知识

    使用的框架:moco框架下载地址:https://repo1.maven.org/maven2/com/github/dreamhead/moco-runner/1.1.0/ 启动方式:java -j ...

  4. STM32外设:专用定时器 IWDG、WWDG、RTC

    主要外设: IWDG:Independent Watch DoG 独立看门狗 WWDG:Window Watch DoG 窗口看门狗 RTC: Real-Time Clock 实时时钟 IWDG 主要 ...

  5. 从Redis读取.NET Core配置

    在本文中,我们将创建一个自定义的.NET Core应用配置源和提供程序,用于从Redis中读取配置.在此之前,您需要稍微了解一些.NET Core配置提供程序的工作原理,相关的内容可以在Microso ...

  6. OpenWRT的TTYD终端显示已拒绝连接

    更改openwrt软路由后台管理地址后,发现TTYD终端无法连接,显示已拒绝连接,无法使用的解决方法. 解决方法: 1.使用puty工具连接软路由 2.编辑ttyd配置文件 root@OpenWrt: ...

  7. Kotlin委托属性(1)

    在Kotlin中,委托属性(Delegated Properties)是一种强大的语言特性,允许你将属性的 getter 和 setter 方法的实现委托给其他对象.这使得你能够通过委托来重用代码.将 ...

  8. DVWA File Inclusion(文件包含)全等级

    File Inclusion(文件包含) 目录: File Inclusion(文件包含) 前言 PHP伪协议 1.Low get webshell 本地文件包含 远程文件包含 2.Medium 3. ...

  9. 2023-11-01:用go语言,沿街有一排连续的房屋。每间房屋内都藏有一定的现金, 现在有一位小偷计划从这些房屋中窃取现金, 由于相邻的房屋装有相互连通的防盗系统,所以小偷 不会窃取相邻的房屋, 小

    2023-11-01:用go语言,沿街有一排连续的房屋.每间房屋内都藏有一定的现金, 现在有一位小偷计划从这些房屋中窃取现金, 由于相邻的房屋装有相互连通的防盗系统,所以小偷 不会窃取相邻的房屋, 小 ...

  10. DWS临时内存不可用报错: memory temporarily unavailable

    本文分享自华为云社区<DWS临时内存不可用报错: memory temporarily unavailable>,作者:漫天. 1.定位报错的DN/CN 当出现memory tempora ...