摘要:本文简要介绍Sechunter移动应用隐私合规检测的方法步骤,以及目标检测技术在其中的应用。

本文分享自华为云社区《移动应用隐私合规检测简介及目标检测技术的应用》,作者:wolfrevo 。

概述:

受益于移动设备的广泛普及,移动应用近年来得到了蓬勃发展。基于移动设备集成的各类传感器,众多功能丰富的移动应用被开发出来,聚集了大量高价值用户隐私数据,包括用户身份信息、地理位置信息、账户资料信息等。用户在享受移动应用带来便利的同时,其隐私安全也受到了重大威胁。在这样的背景下,移动应用隐私合规检测应运而生。本文简要介绍Sechunter移动应用隐私合规检测的方法步骤,以及目标检测技术在其中的应用。

1 移动应用隐私合规检测背景简介

移动应用的隐私合规检测,从技术形态上可以分为静态检测方案与动态检测方案。以下分别作简要介绍。

1.1 静态检测

静态检测方案通过对移动应用的安装包进行反编译,进而通过静态数据流、控制流分析等技术,检测移动应用中可能存在的隐私泄露问题。在该领域中,常用到以下工具:

  • Apktool [1]: 反编译安卓Apk,可以反编译资源,并在进行修改之后重新打包Apk
  • dex2jar [2]: 将Apk反编译成Java源码(classes.dex转化成jar文件)
  • Soot [3]:Soot最初是Java优化框架,发展至今已广泛应用于分析优化和可视化Java和Android应用程序。
  • Flowdroid [4]: 基于IFDS算法实现的针对Android的静态污点分析框架

利用上述工具,开发者可以制定相应的规范检测项,从而检测到应用中存在的隐私泄露隐患。

1.2 动态检测

动态检测方案通过运行待检测应用于真实手机或者模拟器沙箱,通过监控移动应用对系统内敏感资源的访问,结合移动应用的隐私政策声明分析,检测移动应用是否包含隐私违规行为。应用运行则可以由人工进行或者UI自动化。

1.2.1 敏感行为监测

运行时敏感行监测实时监控应用对用户隐私敏感数据的访问。在实现上分为两种:一种是直接在源码中添加监控代码。如在AOSP代码中的getLastLocation中直接添加代码,记录API访问行为。另一种则是通过hook方案,不直接修改源码,而是在系统运行APP时添加逻辑钩子,在APP调用特定敏感API时,先跳转至hook函数,最后再返回调用原敏感API。其中,hook函数负责记录应用的API访问行为。

1.2.2 UI自动化

移动应用自动化即通过程序控制移动应用UI交互。该领域典型的工具有: monkey [5],进行UI界面随机点击以及系统级事件。第三方UI自动化工具:uiautomator2 [6]和AndroidViewClient [7], 基于系统工具uiautomator实现,能够实现基本的自动化UI测试功能编程。

2 目标检测技术在隐私合规检测领域的应用

深度学习中的目标检测,主要用于在视图中检测出物体的类别和位置,如下图所示。目前业界主要有YOLO [7],SSD [8]和RCNN [9]三类深度学习算法。

以Faster RCNN为例,该算法是RCNN算法的演进。在结构上,Faster RCNN将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。Faster RCNN主要分为4个主要内容:

1. Conv layers。作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取image的feature maps。该feature maps被共享用于后续RPN层和全连接层。

2. Region Proposal Networks。RPN网络用于生成region proposals。该层通过softmax判断anchors属于positive或者negative,再利用bounding box regression修正anchors获得精确的proposals。

3. Roi Pooling。该层收集输入的feature maps和proposals,综合这些信息后提取proposal feature maps,送入后续全连接层判定目标类别。

4. Classification。利用proposal feature maps计算proposal的类别,同时再次bounding box regression获得检测框最终的精确位置。

2.1 应用点

在UI自动化中,常常存在基于uiautomator的工具无法识别的UI布局。主要有两种原因导致这种情况:1、UI内容由整张图片渲染而成;2、UI控件原因,某些用户编写的UI控件没有支持无障碍服务,导致uiautomator无法获取UI布局。此时,使用UI图片目标识别,可以判断可点击的有效区域。

如上图所示,在Sechunter的UI自动化中,我们需要获取应用的隐私声明文件链接,以及相应的“同意”、“不同意”的位置。在uiautomator无法获得UI布局的情况下,可以进行目标识别,通过图像获得可点击位置,从而推进UI自动化测试的继续执行。

2.2 目标检测技术的应用

在模型训练中,主要困难在于数据集收集。Sechunter的解决方案是,先通过传统的图片处理方案获取初步的数据集,这里我们使用了图片处理领域的显著区域识别。这个过程的关键是要有一个验证模块,对隐私声明链接而言,即验证该区域点击跳转后内容的确是隐私声明。我们使用了LDA主题模型来判断文本内容是否是隐私政策。通过验证的样本都收纳到数据集中,然后用这些标注数据进行第一版的目标识别模型训练。

训练出来的模型只是利用传统图像处理能够识别成功的图片进行学习。对于不成功的图片,我们进一步使用OCR。OCR能够识别出图像中的文字内容及其位置。结合第一阶段的目标识别模型进行结果融合,可以得到更为精确的可点击区域结果,并且这个时候的融合方案已经初步可以使用了。随着数据集的积累,目标检测模型的检测结果也变得更精确。最终能够只使用目标识别方案。

3 小结

移动应用隐私合规检测对保护个人信息安全有着重要作用。但目前市场上的工具自动化检测能力普遍都还比较有限。Sechunter在自动化隐私合规检测领域做了一些积极探索,进行了众多跨领域技术调研,本文介绍的目标识别技术能够帮助自动化工具更快更准地识别UI可点击区域。

文末福利:华为云漏洞扫描服务VSS 基础版限时免费体验>>>

引用:

【1】 Apktool:https://ibotpeaches.github.io/Apktool/

【2】 Dex2jar:https://github.com/pxb1988/dex2jar

【3】 Soot:http://soot-oss.github.io/soot/

【4】 Flowdroid: https://blogs.uni-paderborn.de/sse/tools/flowdroid/

【5】 Monkey:https://developer.android.com/studio/test/monkey?hl=zh-cn

【6】 uiautomator2:https://github.com/openatx/uiautomator2

【7】 AndroidViewClient:https://github.com/dtmilano/AndroidViewClient

【8】 YOLO3:https://github.com/ultralytics/yolov3

【9】 SSD:https://github.com/amdegroot/ssd.pytorch

【10】 Faster R-CNN:https://arxiv.org/abs/1506.01497

点击关注,第一时间了解华为云新鲜技术~

Sechunter移动应用隐私合规检测详解的更多相关文章

  1. Android App隐私合规检测辅助工具(Camille)

    Camille Android App隐私合规检测辅助工具,项目仓库:https://github.com/zhengjim/camille 简介 现如今APP隐私合规十分重要,各监管部门不断开展AP ...

  2. 阿里云安骑士-Centos7系统基线合规检测-修复记录

    执行命令 sysctl -w net.ipv4.conf.all.send_redirects=0sysctl -w net.ipv4.conf.default.send_redirects=0sys ...

  3. APP漏洞扫描器之本地拒绝服务检测详解

    APP漏洞扫描器之本地拒绝服务检测详解 阿里聚安全的Android应用漏洞扫描器有一个检测项是本地拒绝服务漏洞的检测,采用的是静态分析加动态模糊测试的方法来检测,检测结果准确全面.本文将讲一下应用漏洞 ...

  4. Java版人脸检测详解下篇:编码

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  5. JavaScript数据类型检测详解

    //JS该如何检测数据的类型呢? //使用关键字: typeof //输出结果依次为:'number','string','boolean'. console.log(typeof 17); cons ...

  6. Java版人脸检测详解上篇:运行环境的Docker镜像(CentOS+JDK+OpenCV)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  7. 浏览器F12 waterfall性能检测详解详解

    Queueing 是排队的意思 Stalled 是阻塞  请求访问该URL的主机是有并发和连接数限制的,必须要等之前的执行才能执行之后的,这段时间的耗时 DNS Lookup 是指域名解析所耗时间 I ...

  8. GRC: 个人信息保护法, 个人隐私, 企业风险合规治理

    声明 个人原创, 转载需注明来源 https://www.cnblogs.com/milton/p/15885344.html 个人信息保护的历史和现状 个人信息保护的立法可追溯至德国黑森州1970年 ...

  9. Linux机器24项安全合规设置

    工作的一些内容,这是中国移动集团当前linux机器安全合规标准,找了点时间将其归类,并查了一些资料,每项配置是什么意思,不仅要知其然,还要知其所以然.好记性不如烂笔头. 1.  检查FTP配置-限制用 ...

  10. vue批量验证提交表单的数据是否合规

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

随机推荐

  1. 18. 从零开始编写一个类nginx工具, 主动式健康检查源码实现

    wmproxy wmproxy将用Rust实现http/https代理, socks5代理, 反向代理, 静态文件服务器,后续将实现websocket代理, 内外网穿透等, 会将实现过程分享出来, 感 ...

  2. Nginx-多功能脚本

    #!/bin/bash #2020年2月16日 #auto_install_nginx_web.v3 #by fly ################################ #NGX_VER ...

  3. 线段树(nb)

    今天刚学习了线段树,赶紧趁热打了两遍模版 下面都是线段树的基本操作,这个板子是维护的区间中的最大值,当然修改change和build包括线段树中的data可以维护区间上的不同信息. 首先介绍一下线段树 ...

  4. iOS内存管理机制

    这世上,没有谁活得比谁容易,只是有人在呼天抢地,有人在默默努力.   随着科技的发展,移动设备的内存越来越大,设备的运行速度也越来越快,但是相对于整个应用市场上成千上万的应用容量来说,还是及其有限的. ...

  5. Python 哈希表的实现——字典

    哈喽大家好,我是咸鱼 接触过 Python 的小伙伴应该对[字典]这一数据类型都了解吧 虽然 Python 没有显式名称为"哈希表"的内置数据结构,但是字典是哈希表实现的数据结构 ...

  6. 1. Linux 软件介绍

    重点: rpm -i -e -qi -ql -qf -qa --scripts. yum install remove info list repolist provides. 配置系统源. 搭建私有 ...

  7. CSS+HTML初学跟踪项目记录笔记【防丢失】(文章发布系统)二【鸽了】

    贴上源代码 <%@ page language="java" contentType="text/html; charset=UTF-8" pageEnc ...

  8. fianl详解(适合新手)

    final 1.final是Java语言中的一个关键字 2.final表示最终的,不可变的. 3.final可以修饰变量以及方法,还有类等 4.final修饰的变量? 5.final修饰的方法? 6. ...

  9. 25 个超棒的 Python 脚本合集

    Python是一种功能强大且灵活的编程语言,拥有广泛的应用领域.下面是一个详细介绍25个超棒的Python脚本合集: 1. 网络爬虫:使用Python可以轻松编写网络爬虫,从网页中提取数据并保存为结构 ...

  10. 在CPF里使用OpenGL做跨平台桌面应用开发

    CPF 是开源的C#跨平台UI框架,支持使用OpenGL来渲染,可以用来硬件加速播放视频或者显示3D模型 实现原理其实就是Skia用OpenGL后端,Skia里绑定GLView的OpenGL纹理,将纹 ...