1 背景

京喜达技术部在社区团购场景下采用JDQ+Flink+Elasticsearch架构来打造实时数据报表。随着业务的发展Elasticsearch开始暴露出一些弊端,不适合大批量的数据查询,高频次分页导出导致宕机、存储成本较高。

Elasticsearch的查询语句维护成本较高、在聚合计算场景下出现数据不精确等问题。Clickhouse是列式数据库,列式型数据库天然适合OLAP场景,类似SQL语法降低开发和学习成本,采用快速压缩算法节省存储成本,采用向量执行引擎技术大幅缩减计算耗时。所以做此对比,进行Elasticsearch切换至Clickhouse工作。

2 OLAP

OLAP意思是On-Line Analytical Processing 联机分析处理,Clickhouse就是典型的OLAP联机分析型数据库管理系统(DBMS)。OLAP主要针对数据进行复杂分析汇总操作,比如我们业务系统每天都对当天所有运输团单做汇总统计,计算出每个省区的妥投率,这个操作就属于OLAP类数据处理。与OLAP类似的还有一个OLTP类数据处理,意思是On-Line Transaction Processing 联机事务处理,在OLTP场景中用户并发操作量会很大,要求系统实时进行数据操作的响应,需要支持事务,Mysql、Oracle、SQLServer等都是OLTP型数据库。

2.1 OLTP场景的特征

  • 宽表,即每个表包含着大量的列
  • 对于读取,从数据库中提取相当多的行,但只提取列的一小部分。
  • 查询相对较少(通常每台服务器每秒查询数百次或更少)
  • 查询结果明显小于源数据。换句话说,数据经过过滤或聚合,因此结果适合于单个服务器的RAM中
  • 绝大多数是读请求
  • 数据以相当大的批次(> 1000行)更新,而不是单行更新;或者根本没有更新。
  • 对于简单查询,允许延迟大约50毫秒
  • 列中的数据相对较小:数字和短字符串(例如,每个URL 60个字节)
  • 处理单个查询时需要高吞吐量(每台服务器每秒可达数十亿行)
  • 事务不是必须的
  • 对数据一致性要求低

3 特性

3.1 Elasticsearch

  • 搜索: 适用倒排索引,每个字段都可被索引且可用于搜索,海量数据下近实时实现秒级的响应,基于Lucene的开源搜索引擎,为全文检索、高亮、搜索推荐等提供了检索能力。百度搜索、淘宝商品搜索、日志搜索等
  • 数据分析: Elasticsearch提供了大量数据分析的API和丰富的聚合能力,支持在海量数据的基础上进行数据分析处理。统计订单量、爬虫爬取不同电商的某个商品数据,通过Elasticsearch进行数据分析(各个平台的历史价格、购买力等等)

3.2 Clickhouse

  • 列式存储
  • 压缩算法:采用lz4和zstd算法数据压缩,高压缩比降低数据大小,降低磁盘IO,降低CPU使用率。
  • 索引:按照主键对数据进行排序,clickhouse能在几十毫秒内完成在大量数据对特定数据或范围数据进行查找。
  • 多核心并行处理:ClickHouse会使用服务器上一切可用的资源,来全力完成一次查询。
  • 支持SQL:一种基于SQL的声明式查询语言,在许多情况下与ANSI SQL标准相同。支持group by,order by,from, join,in以及非相关子查询等。
  • 向量引擎:为了高效的使用CPU,数据不仅仅按列存储,同时还按向量(列的一部分)进行处理,这样可以更加高效地使用CPU。
  • 实时的数据更新:数据总是已增量的方式有序的存储在MergeTree中。数据可以持续不断高效的写入到表中,不会进行任何加锁等操作。写入流量在50M-200M/s
  • 适合在线查询:响应速度快延迟极低
  • 丰富的聚合计算函数

4 我们的业务场景

  1. 大宽表,读大量行少量列进行指标聚合计算查询,结果集比较小。数据表都是通过Flink加工出来的宽表,列比较多。在对数据进行查询或者分析时,经常选择其中的少数几列作为维度列、对其他少数几列作为指标列,对全表或者一定范围内的数据做聚合计算。这个过程会扫描大量的行数据,但是只用了少数几列。
  2. 大量的列表分页查询与导出
  3. Flink中数据大批量追加写入,不做更新操作
  4. 有时某个指标计算需要全表扫描做聚合计算
  5. 很少进行全文搜索

结论:数据报表、数据分析场景是典型的OLAP场景,在业务场景上列式存储数据库Clickhouse比Elasticsearch更有优势,Elasticsearch在全文搜索上更占优势,但是我们这种全文搜索场景较少。

5 成本

  • 学习成本:Clickhouse是SQL语法比Elasticsearch的DSL更简单,几乎所有后端研发都有Mysql开发经验,比较相通学习成本更低。
  • 开发、测试、维护成本:Clickhouse是SQL语法,与Mysql开发模式相似,更好写单元测试。Elasticsearch是使用Java API拼接查询语句,复杂度较高,不易读不易维护。
  • 运维成本:未知,互联网上在日志场景下Clickhouse比Elasticsearch成本更低。
  • 服务器成本:
  • Clickhouse的数据压缩比要高于Elasticsearch,相同业务数据占用的磁盘空间ES占用磁盘空间是Clickhouse的3-10倍,平均在6倍。 见图1
  • Clickhouse比ES占用更少的CPU和内存

结论:同等数据量情况下,Elasticsearch使用的存储空间是Clickhouse的3-10倍,平均在6倍。综合学习、开发、测试、维护方面,Clickhouse比Elasticsearch更友好

6 测试

6.1服务器配置

以下均基于下图配置进行测试

6.2 写入压测

以下基于wms_order_sku表,通过Flink在业务平稳情况下双写Elasticsearch和Clickhouse1000W+数据进行测试得到的结果

  • 占用CPU情况:Elasticsearch CPU一直占用很高,Clickhouse占用很少CPU。见 图2

  • 占用内存情况:Elasticsearch 内存升高频繁GC,Clickhouse占用内存较低,比较平稳。见 图3

  • 写入吞吐量:CH单机写入速度大约为50~200MB/s,如果写入的数据每行为1kb,写入速度为5-20W/s,图 4(写入吞吐量)为互联网上Elasticsearch与Clickhouse写入数据的对比图,同等数据样本的情况下CH写入性能是Elasticsearch的5倍。由于我们目前Flink任务为双写,考虑到会互相影响,后续补充压测结果。

结论:批量写入数据时Elasticsearch比Clickhouse更吃内存和CPU,Elasticsearch消耗的内存是Clickhouse的5.3倍,消耗的CPU是Clickhouse的27.5倍。吞吐量是Elasticsearch的5倍

6.3 查询性能(单并发测试)

以下场景是我们数据报表以及数据分析中出现的高频场景,所以基于此进行查询性能测试

数据对比情况

  • Clickhouse自身在集群配置差一倍的情况下查询性能差异不是很大,CH2(48C 182GB)比CH1(80C 320GB)平均慢14%。见图 5

  • Elasticsearch在集群配置差一倍的情况下查询性能受影响较大,ES2(46C 320GB)比ES1(78C 576GB)平均慢40%。见图 6

  • ES2(46C 320GB)与CH2(48C 182GB)相比,ES2与CH2 CPU核数相近,ES2内存是CH2 1.75倍的情况下,CH2的响应速度是ES2的响应速度的的12.7倍。见图 7

结论:查询数据时Elasticsearch比Clickhouse慢,在配置相近的情况下Clickhouse的响应速度是Elasticsearch的12.7倍,特别是基于时间的多字段进行聚合查询是Clickhouse比Elasticsearch快32倍。Clickhouse的查询响应素速度受集群配置大小的影响较小。

6.4 查询压测(高并发测试,数据来源于互联网)

由于准备高并发测试比较复杂耗时多,后续会基于我们的业务数据以及业务场景进行查询压力测试。以下数据来源于互联网在用户画像场景(数据量262933269)下进行的测试,与我们的场景非常类似。

结论:Clickhouse对于高并发支持的不够,官方建议最大QPS为100。高并发情况下吞吐量不如Elasticsearch更友好

7 总结

Clickhouse与Elasticsearch对比Clickhouse的优缺点。

优点:

  • 硬件资源成本更低,同等场景下,Clickhouse占用的资源更小。
  • 人力成本更低,新人学习、开发单测以及测试方面都更加友好,更容易介入。
  • OLAP场景下Clickhouse比Elasticsearch更适合,聚合计算比Elasticsearch更精缺、更快,更节省服务器计算资源。
  • 写入性能更高,同等情况下是Elasticsearch的5倍,写入时消耗的服务器资源更小。
  • Elasticsearch在大量导出情况下频繁GC,严重可能导致宕机,不如Clickhouse稳定。
  • 查询性能平均是Elasticsearch的12.7倍,Clickhouse的查询性能受服务器配置影响较小
  • 月服务器消费相同情况Clickhouse能够得到更好的性能。

缺点:

  • 在全文搜索上不如Elasticsearch支持的更好,在高并发查询上支持的不如Elasticsearch支持的更好

作者:京东物流 马红岩

内容来源:京东云开发者社区

Elasticsearch与Clickhouse数据存储对比的更多相关文章

  1. 基于腾讯云存储COS的ClickHouse数据冷热分层方案

    一.ClickHouse简介 ClickHouse是一个用于联机分析(OLAP)的列式数据库管理系统(DBMS),支持PB级数据量的交互式分析,ClickHouse最初是为YandexMetrica ...

  2. ClickHouse(02)ClickHouse架构设计介绍概述与ClickHouse数据分片设计

    ClickHouse核心架构设计是怎么样的?ClickHouse核心架构模块分为两个部分:ClickHouse执行过程架构和ClickHouse数据存储架构,下面分别详细介绍. ClickHouse执 ...

  3. JuiceFS 在 Elasticsearch/ClickHouse 温冷数据存储中的实践

    企业数据越存越多,存储容量与查询性能.以及存储成本之间的矛盾对于技术团队来说是个普遍难题.这个难题在 Elasticsearch 与 ClickHouse 这两个场景中尤为突出,为了应对不同热度数据对 ...

  4. Curve 文件存储在 Elasticsearch 冷热数据存储中的应用实践

    Elasticsearch在生产环境中有广泛的应用,本文介绍一种方法,基于网易数帆开源的Curve文件存储,实现Elasticsearch存储成本.性能.容量和运维方面的显著提升. ES 使用 Cur ...

  5. 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据操作(二)

    CSSDesk body { background-color: #2574b0; } /*! zybuluo */ article,aside,details,figcaption,figure,f ...

  6. 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据操作

    http://www.cnblogs.com/wgp13x/p/4934521.html 内容一样,样式好的版本. 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据 ...

  7. Spring Boot 揭秘与实战(二) 数据存储篇 - ElasticSearch

    文章目录 1. 版本须知 2. 环境依赖 3. 数据源 3.1. 方案一 使用 Spring Boot 默认配置 3.2. 方案二 手动创建 4. 业务操作5. 总结 4.1. 实体对象 4.2. D ...

  8. Elasticsearch集群搭建及使用Java客户端对数据存储和查询

    本次博文发两块,前部分是怎样搭建一个Elastic集群,后半部分是基于Java对数据进行写入和聚合统计. 一.Elastic集群搭建 1. 环境准备. 该集群环境基于VMware虚拟机.CentOS ...

  9. 服务追踪数据使用 RabbitMQ 进行采集 + 数据存储使用 Elasticsearch + 数据展示使用 Kibana

    服务追踪数据使用 RabbitMQ 进行采集 + 数据存储使用 Elasticsearch + 数据展示使用 Kibana https://www.cnblogs.com/xishuai/p/elk- ...

  10. 爬虫数据存储——安装docker和ElasticSearch(基于Centos7)

    爬虫数据存储--安装docker和ElasticSearch(基于Centos7) 先决条件 操作系统要求 要安装Docker Engine-Community,您需要一个CentOS 7的维护版本. ...

随机推荐

  1. 集训第二周计划:把cf近期的div2除了最后一题给切完

    太菜了太菜了,弄个训练计划. 晚上没事干的时候我想把博客园皮肤改一下,搜着搜着不知道怎么回事点进去一些竞赛选手的博客,比如这个 https://www.cnblogs.com/soda-ma/p/13 ...

  2. Spring事务的底层原理

    1. 划分处理单元--IOC 由于spring解决的问题是对单个数据库进行局部事务处理的,具体的实现首相用spring 中的IOC划分了事务处理单元.并且将对事务的各种配置放到了ioc容器中(设置事务 ...

  3. Xenomai 源码分析-Part I

    Xenomai Edition v3.0.5 xenomai_init() static int __init xenomai_init(void) 源码分析 setup_init_state // ...

  4. centos7无网环境安装docker

    1.下载docker的安装文件 https://download.docker.com/linux/static/stable/x86_64/ 由于公司OpenStack用的docker版本是18.0 ...

  5. Kafka存储内幕详解

    1.概述 随着微服务和分布式计算的出现,Kafka已经成为各种主流平台系统架构中不可缺少的组成部分了.在本篇文章中,笔者将尝试为大家来解密Kafka的内部存储机制是如何运作的. 2.内容 在分布式系统 ...

  6. apt-get update报“Temporary failure resolving '***.com/cn'

    解决办法: 1.打开/etc/resolv.conf: $sudo vim /etc/resolv.conf 2.修改nameserver即DNS服务器: 我这里使用腾讯云和阿里云的DNS 加入: n ...

  7. CTF-RE-学习记录-汇编-2

    汇编工具DTDebug 下载后设置好odd与插件路径,同时在属性中设置为管理员身份运行(无Administrator权限进入的时候一直在提示) 寄存器 存储数据: CPU>内存>硬盘 32 ...

  8. AlphaFold2无痛安装教程(超级详细)

    目录 介绍 环境 安装 CMAKE安装 hmmer安装 HHsuite安装 Kalign安装 OpenMM安装 PDBfixer安装 Python依赖包安装 AlphaFold安装 AlphaFold ...

  9. 一个.Net简单、易用的配置文件操作库

    在我们日常项目开发中,操作INI/CFG配置文件,往往会通过调用WinAPI来实现,WinAPI接口参数只支持字符串,而我们项目中,往往数据类型是多种多样的,在保存和获取配置值,我们就要进行类型的转换 ...

  10. mysql查询表中一个字段第三个字母为A第五个字母为R的sql

    select id ,name, age from user where name like ' _ _A_R%';