CSP将目标定义为中心点和尺寸,通过网络直接预测目标的中心和寸尺,相对于传统的RCNN类型检测算法轻量化了不少。整体思想与Object as Points撞车了,真是英雄所见略同



来源:晓飞的算法工程笔记 公众号

论文: Center and Scale Prediction: A Box-free Approachfor Pedestrian and Face Detection(High-level Semantic Feature Detection: A New Perspective for Pedestrian Detection)

Introduction


  目前一些研究基于深度卷积网络进行边缘检测,获得了不错的效果。论文认为既然卷积网络能够预测边缘,那网络必然也能预测物体的中心点及其尺寸。于是论文将检测的目标定义为中心点及尺寸,提出了CSP(Center and Scale Prediction)

  CSP的网络结构大致如图1所示,在主干网络上分别预测目标中心点的位置及其对应的尺寸。这篇文章的整体思想与CenterNet(zhou. etc)基本一致,但不是抄袭,因为是同一个会议上的论文,CenterNet主要研究常规的目标检测,而这篇主要研究人脸检测和行人检测。但CSP仍然需要进行NMS的后处理,较CenterNet更逊色一些,但不妨碍我们进行简单地了解,包括学习论文的训练方法以及参数。

Overall architecture


  CSP检测算法的结构如图2所示,主干网络由ImageNet的预训练网络截断所得,主要分为特征提取部分以及预测部分。

Feature Extraction

  以ResNet-50为例,卷积层分为五个阶段,下采样比例分别为2、4、8、16和32,论文进行了以下修改与设置:

  • 将第五阶段的卷积更换为空洞卷积,使其保持下采样比例为16。
  • 为了融合浅层和高层特征,在Concatenate前将多阶段输出进行反卷积扩大至同一分辨率。
  • 由于不同阶段特征图的分辨率不同,使用L2-normalization将各阶段特征图的范数缩放为10。
  • 论文通过实验最终只选用了第3、第4和第5阶段的特征进行检测。
  • 给定大小为\(H\times W\)的输入图片,最终的concatenated特征图大小为\(H/r \times W/r\),r为4时性能最好。

Detection Head

  在获得concatenated特征图\(\Phi_{det}\)后,使用简单的detection head将特征转化为检测结果。首先采用\(3\times 3\)卷积层输出256维特征,然后分别使用\(1\times 1\)卷积层来产生偏移值预测,尺寸图和中心点热图。

Training


Ground Truth

  给定GT标注,能够自动地生成对应的GT中心点位置和尺寸。将GT标注对应特征图上的位置设定为中心点正样本,其它位置均为负样本。尺寸可定义为目标的高和宽,对于使用line annotation标注的行人数据集,其长宽比固定为0.41,仅需预测高度即可。对于GT尺寸,正样本位置\(k\)的值定义为\(log(h_k)\),在其半径范围2以内的位置也设为同样的值,其余设置为零。而若加入偏移值预测分支,该分支的GT定义为\((\frac{x_k}{r}-\lfloor \frac{x_k}{r}\rfloor, \frac{y_k}{r}-\lfloor
\frac{y_k}{r} \rfloor )\)。

Loss Function

  对于中心点预测分支,将其视为分类任务使用交叉熵损失进行训练。为了让训练更加平滑,跟CornerNet一样定义高斯核,在特征图上对GT点进行半径范围内的扩展:

  \(K\)为图片中的目标数,\((x_k, y_k, w_k, h_k)\)为中心坐标以及宽高,方差\((\sigma^k_w, \sigma^k_h)\)与目标的高和宽成比例,如果高斯区域有重叠,则取最大值。为了防止正负样本极度不平衡,加入focal loss的权值进行平衡:

  \(p_{ij}\in [0,1]\)代表网络预测该位置为目标中心的概率,\(y_{i,j}\in {0, 1}\)代表GT标签。

  对于尺寸预测,将其视为回归任务使用smooth L1损失进行训练:

  \(s_k\)和\(t_k\)分别代表网络预测结果和每个目标的GT。如果使用了偏移值分支,则同样将其视为回归任务进行训练。完整的优化目标为:

  \(\lambda_c\), \(\lambda_s\), \(\lambda_o\)分别设置为0.01,1和0.1

Inference


  在测试的时候,CSP直接进行简单的前向推理,保留中心热图中置信度大于0.01的位置及其尺寸结果,生成对应的预测框并映射到原图尺寸,对所有保留的预测结果进行NMS处理。如果使用了偏移值预测分支,则对映射后的中心点进行调整。

Conclusion


  CSP将目标定义为中心点和尺寸,通过网络直接预测目标的中心和寸尺,相对于传统的RCNN类型检测算法轻量化了不少。整体思想与Object as Points撞车了,发表于同一期会议,真是英雄所见略同了。





如果本文对你有帮助,麻烦点个赞或在看呗~

更多内容请关注 微信公众号【晓飞的算法工程笔记】

CSP:Object as Point同会议论文,相似思想用于人脸和行人检测 | CVPR 2019的更多相关文章

  1. [CVPR 2019]Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation

    论文地址:https://arxiv.org/abs/1901.02970    github链接:https://github.com/hughw19/NOCS_CVPR2019 类别级6D物体位姿 ...

  2. Arbitrary-Oriented Object Detection with Circular Smooth Label(ECCV2020,旋转目标检测)

    论文链接:https://arxiv.org/abs/2003.05597 code:https://github.com/Thinklab-SJTU/CSL_RetinaNet_Tensorflow ...

  3. 【TensorFlow】Win7下使用Object Detection API 训练自己的数据集,并视频实时检测

    说明: 图片:自己开的摄像头,截取的图片.选择了200张图片.下面会有截取的脚本. 使用labelImg工具进行图片进行标注.产生PascalVOC格式的XML文件.[labelImg工具的安装和使用 ...

  4. 行人检测(Pedestrian Detection)资源

    一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the stat ...

  5. 目标检测之行人检测(Pedestrian Detection)---行人检测之简介0

    一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the stat ...

  6. SIGAI深度学习第四集 深度学习简介

    讲授机器学习面临的挑战.人工特征的局限性.为什么选择神经网络.深度学习的诞生和发展.典型的网络结构.深度学习在机器视觉.语音识别.自然语言处理.推荐系统中的应用 大纲: 机器学习面临的挑战 特征工程的 ...

  7. 【计算机视觉】行人检测(Pedestrian Detection)资源

    一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the stat ...

  8. 使用面向对象思想处理cookie

    实例:使用面向对象思想处理cookie如果读者对cookie 不熟悉,可以在第七章学习它的使用方法,虽然在那里创建了几个通用函数用于cookie 的处理,但这些函数彼此分离,没有体现出是一个整体.联想 ...

  9. Object类型知识总结,你掌握了多少?

      Object类型    ECMAScript中的对象其实就是一组数据和功能的集合.对象可以通过执行new操作符后跟要创建的对象类型的名称来创建.而创建Object类型的实例并为其添加属性和(或)方 ...

  10. 论文阅读笔记五十三:Libra R-CNN: Towards Balanced Learning for Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构 ...

随机推荐

  1. centos 安装nacos 并以后台服务形式启动

    一.下载解压nacos tar -xvf nacos-server-1.2.0.tar.gz 二.持久化配置(mysql) 修改nacos/conf/application.properties文件, ...

  2. Java设计模式-访问者模式Visitor

    介绍 访问者模式(Visitor Pattern),封装一些作用于某种数据结构的各元素的操作,它可以在不改变数据结构的前 提下定义作用于这些元素的新的操作. 主要将数据结构与数据操作分离,解决 数据结 ...

  3. Springboot实现remember-me记住我功能

    1.什么是remeber-me? remeber-me即记住我功能,是我们在登录web系统时的常见勾选项.当我们登录一个web系统时除了输入常规的用户名.密码后还可以勾选记住我选项(假设该系统提供了该 ...

  4. 【libGDX】Mesh立方体贴图(6张图)

    1 前言 ​ 本文通过一个立方体贴图的例子,讲解三维纹理贴图的应用,案例中使用 6 张不同的图片给立方体贴图,图片如下. ​ 读者如果对 libGDX 不太熟悉,请回顾以下内容. 使用Mesh绘制三角 ...

  5. IntelliJ IDE使用指南

    下载IDEA 注释模板 #if (${PACKAGE_NAME} && ${PACKAGE_NAME} != "")package ${PACKAGE_NAME}; ...

  6. Python2升级到Python3

    操作系统环境:CentOS Linux release 7.4.1708 (Core). 系统默认Python版本为2.7. 升级前的版本信息: [root@cch-spider-web1 ~]# l ...

  7. 利用wiile双层循环打印各种星星---day06

    # 十行十列小星星 j = 0 #定义行数 while j<10: #当行数小于10的时候 i=0 #定义列 while i <10: #当列小于10的时候 print('*',end=' ...

  8. 【Application Insights】使用Powershell命令向Application Insgihts发送测试数据

    问题描述 在昨天的文章中,介绍了 "[Application Insights]使用CURL命令向Application Insgihts发送测试数据",今天则继续实验通过Powe ...

  9. 【Azure K8S】记录AKS VMSS实例日志收集方式

    问题描述 如何从AKS的VMSS集群中收集实例日志? 参考步骤 第一步:登陆VMSS实例 参考官网步骤:使用 SSH 连接到 Azure Kubernetes 服务 (AKS) 群集节点以进行维护或故 ...

  10. 【Azure API 管理】APIM服务资源删除后,为什么不能马上创建相同名称的APIM服务呢?

    问题描述 使用Azure APIM服务,在删除旧资源准备新建相同名称的新APIM服务时,尝试多次都是出现"指定的服务名称已正在使用"错误.但实际上同名称的服务已经被删除.为什么多次 ...