题意可抽象为:N个包中每个包容量是T[i],每个包都拿一些,设拿出的总数为sum时的方案数为q,求max(q)

设dp[i][j]为拿了前i个包,共拿出了j物品时的方案数。那么

for i=1 to n

  for j=0 to sum

    for k=0 to t[i]

      dp[i][j]+=dp[i-1][j-k]

但是注意这题中间过程就得取MOD,然而这题求的却是最大值取模而不是取模之后的最大值  【这俩并不一样

可以打表得知dp[N][sum{T[i]}/2]是最大值

 #include <iostream>
#include<cstring>
#define MOD 1000000007
#define LL long long
using namespace std;
int N,T;
LL sum;
int t[];
int dp[][]; int main()
{
cin>>T;
while(T--)
{
memset(dp,,sizeof(dp));
sum=; cin>>N;
for(int i=;i<=N;i++)
{
cin>>t[i];
sum+=t[i];
} //cout<<sum<<endl;
sum=sum/;
//cout<<sum<<endl; for(int i=;i<=t[];i++)
dp[][i]=; for(int i=;i<=N;i++)
for(int j=;j<=sum;j++)
for(int k=;k<=t[i];k++)
if(j>=k)
{
//cout<<i%2<<" "<<(i-1)%2<<endl;
dp[i][j]+=dp[i-][j-k]; //dp[i][j]+=dp[i-1][j-k]
dp[i][j]=dp[i][j]%MOD;
} cout<<dp[N][sum]<<endl;
} return ;
}

hdu5000 背包dp的更多相关文章

  1. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  2. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  3. HDU 5501 The Highest Mark 背包dp

    The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  4. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  5. noj [1479] How many (01背包||DP||DFS)

    http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...

  6. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  7. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  8. G - Surf Gym - 100819S -逆向背包DP

    G - Surf Gym - 100819S 思路 :有点类似 逆向背包DP , 因为这些事件发生后是对后面的时间有影响. 所以,我们 进行逆向DP,具体 见代码实现. #include<bit ...

  9. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

随机推荐

  1. 拯救你的文档 – 【DevOps敏捷开发动手实验】开源文档发布

    今天上海的天气真是不错,风和日丽.再次来到微软上海紫竹研发中心,心情很是愉快,喜欢这里的大草坪,喜欢这里的工程气氛,更喜欢今天来陪我的小伙伴们. 这次动手实验培训与以往最大的不同就是采用了开源文档的方 ...

  2. Android Fragment生命周期

    Fragment与Activity的生命周期关系: 刚打开Activity:Fragment onAttach > Fragment onCreate > Fragment onCreat ...

  3. 从零自学Hadoop(07):Eclipse插件

    阅读目录 序 Eclipse Eclipse插件 新建插件项目 系列索引 本文版权归mephisto和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. 文章是哥(mephisto)写 ...

  4. Python正则表达式:最短匹配

    最短匹配应用于:假如有一段文本,你只想匹配最短的可能,而不是最长. 例子 比如有一段html片段,'\this is first label\\the second label\',如何匹配出每个a标 ...

  5. linux shell 变量

  6. nginx简易入门(转)

    相信很多人都听过nginx,这个小巧的东西慢慢地在吞食apache和IIS的份额.那究竟它有什么作用呢?可能很多人未必了解. 说到反向代理,可能很多人都听说,但具体什么是反向代理,很多人估计就不清楚了 ...

  7. Java程序设计之扑克牌

    这段代码的主要实现功能扑克牌的洗牌和发牌功能,一副牌,红桃,黑桃,梅花,方片,A~K,不含大小王. 构造一个class. 首先是声明花色: private String[] sign={"方 ...

  8. 生产环境使用 pt-table-checksum 检查MySQL数据一致性

    公司数据中心从托管机房迁移到阿里云,需要对mysql迁移(Replication)后的数据一致性进行校验,但又不能对生产环境使用造成影响,pt-table-checksum 成为了绝佳也是唯一的检查工 ...

  9. XML中输入特殊符号

    XML中输入特殊符号 周银辉 特殊符号比如 ™, 要在xml中使用的话, 其实和html的转码是一样的, 参考下面这个表(使用十进制编码那一列) 特殊符号 命名实体 十进制编码 特殊符号 命名实体 十 ...

  10. asp.net(C#)网站发布后 Global.asax 里 Application_Error 不执行的问题

    现象 在 Global.asax 用 Application_Error 捕捉了http的404,500等错误,在本机测试正常,发布后无效,几经周折终于解决了... 程序是这样设计的 Applicat ...