技术背景

在MindSpore深度学习框架中,我们可以向construct函数传输必备参数或者关键字参数,这跟普通的Python函数没有什么区别。但是对于MindSpore中的自定义反向传播bprop函数,因为标准化格式决定了最后的两位函数输入必须是必备参数outdout用于接收函数值和导数值。那么对于一个自定义的反向传播函数而言,我们有可能要传入多个参数。例如这样的一个案例:

import mindspore as ms
from mindspore import nn, Tensor, value_and_grad
from mindspore import numpy as msnp class Net(nn.Cell):
def bprop(self, x, y=1, out, dout):
return msnp.cos(x) + y
def construct(self, x, y=1):
return msnp.sin(x) + y x = Tensor([3.14], ms.float32)
net = Net()
print (net(x, y=1), value_and_grad(net)(x, y=0))

但是因为在Python的函数传参规则下,必备参数必须放在关键字参数之前,也就是out和dout这两个参数要放在前面,否则就会出现这样的报错:

  File "test_rand.py", line 53
def bprop(self, x, y=1, out, dout):
^
SyntaxError: non-default argument follows default argument

按照普通Python函数的传参规则,我们可以把y这个关键字参数的放到最后面去:

import mindspore as ms
from mindspore import nn, Tensor, value_and_grad
from mindspore import numpy as msnp class Net(nn.Cell):
def bprop(self, x, out, dout, y=1):
return msnp.cos(x) + y
def construct(self, x, y=1):
return msnp.sin(x) + y x = Tensor([3.14], ms.float32)
net = Net()
print (net(x, y=1), value_and_grad(net)(x, y=0))

经过这一番调整之后,我们发现没有报错了,可以正常输出结果,但是这个结果似乎不太正常:

[1.0015925] (Tensor(shape=[1], dtype=Float32, value= [ 1.59254798e-03]), Tensor(shape=[1], dtype=Float32, value= [ 1.25169754e-06]))

因为这里x传入了一个近似的\(\pi\),所以在construct函数计算函数值时,得到的结果应该是\(\sin(\pi)+y\),那么这里面\(y\)取\(0\)和\(1\)所得到的结果都是对的。但是关键问题在反向传播函数的计算,原本应该是\(\cos(\pi)+y=y-1\),但是在这里输入的\(y=0\),而导数的计算结果却是\(0\)而不是正确结果\(-1\)。这就说明,在MindSpore的自定义反向传播函数中,并不支持传入关键字参数。

解决方案

刚好前面写了一篇关于PyTorch的文章,这篇文章中提到的两个Issue就针对此类问题。受到这两个Issue的启发,我们在MindSpore中如果需要自定义反向传播函数,可以这么写:

import mindspore as ms
from mindspore import nn, Tensor, value_and_grad
from mindspore import numpy as msnp class Net(nn.Cell):
def bprop(self, x, y, out, dout):
return msnp.cos(x) + y if y is not None else msnp.cos(x)
def construct(self, x, y=1):
return msnp.sin(x) + y x = Tensor([3.14], ms.float32)
net = Net()
print (net(x, y=1), value_and_grad(net)(x, y=0))

简单来说就是,把原本要传给bprop的关键字参数,转换成必备参数的方式进行传入,然后做一个条件判断:当给定了该输入的时候,执行计算一,如果不给定参数值,或者给一个None,执行计算二。上述代码的执行结果如下所示:

[1.0015925] (Tensor(shape=[1], dtype=Float32, value= [ 1.59254798e-03]), Tensor(shape=[1], dtype=Float32, value= [-9.99998748e-01]))

这里输出的结果都是正确的。

当然,这里因为我们其实是强行把关键字参数按照顺序变成了必备参数进行输入,所以在顺序上一定要严格遵守bprop所定义的必备参数的顺序,否则计算结果也会出错:

import mindspore as ms
from mindspore import nn, Tensor, value_and_grad
from mindspore import numpy as msnp class Net(nn.Cell):
def bprop(self, x, w, y, out, dout):
return w*msnp.cos(x) + y if y is not None else msnp.cos(x)
def construct(self, x, w=1, y=1):
return msnp.sin(x) + y x = Tensor([3.14], ms.float32)
net = Net()
print (net(x, y=1), value_and_grad(net)(x, y=0, w=2))

输出的结果为:

[1.0015925] (Tensor(shape=[1], dtype=Float32, value= [ 1.59254798e-03]), Tensor(shape=[1], dtype=Float32, value= [ 2.00000000e+00]))

那么很显然,这个结果就是因为在执行函数时给定的关键字参数跟必备参数顺序不一致,所以才出错的。

总结概要

继上一篇文章从Torch的两个Issue中找到一些类似的问题之后,可以发现深度学习框架对于自定义反向传播函数中的传参还是比较依赖于必备参数,而不是关键字参数,MindSpore深度学习框架也是如此。但是我们可以使用一些临时的解决方案,对此问题进行一定程度上的规避,只要能够自定义的传参顺序传入关键字参数即可。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/bprop-kwargs.html

作者ID:DechinPhy

更多原著文章:https://www.cnblogs.com/dechinphy/

请博主喝咖啡:https://www.cnblogs.com/dechinphy/gallery/image/379634.html

参考链接

  1. https://www.cnblogs.com/dechinphy/p/18179248/torch

MindSpore反向传播配置关键字参数的更多相关文章

  1. 深度学习原理与框架-神经网络结构与原理 1.得分函数 2.SVM损失函数 3.正则化惩罚项 4.softmax交叉熵损失函数 5. 最优化问题(前向传播) 6.batch_size(批量更新权重参数) 7.反向传播

    神经网络由各个部分组成 1.得分函数:在进行输出时,对于每一个类别都会输入一个得分值,使用这些得分值可以用来构造出每一个类别的概率值,也可以使用softmax构造类别的概率值,从而构造出loss值, ...

  2. 一个batch的数据如何做反向传播

    一个batch的数据如何做反向传播 对于一个batch内部的数据,更新权重我们是这样做的: 假如我们有三个数据,第一个数据我们更新一次参数,不过这个更新只是在我们脑子里,实际的参数没有变化,然后使用原 ...

  3. 神经网络(NN)+反向传播算法(Backpropagation/BP)+交叉熵+softmax原理分析

    神经网络如何利用反向传播算法进行参数更新,加入交叉熵和softmax又会如何变化? 其中的数学原理分析:请点击这里.

  4. Django---路由系统,URLconf的配置,正则表达式的说明(位置参数),分组命名(捕获关键字参数),传递额外的参数给视图,命名url和url的反向解析,url名称空间

    Django---路由系统,URLconf的配置,正则表达式的说明(位置参数),分组命名(捕获关键字参数),传递额外的参数给视图,命名url和url的反向解析,url名称空间 一丶URLconf配置 ...

  5. 深度学习原理与框架-卷积神经网络基本原理 1.卷积层的前向传播 2.卷积参数共享 3. 卷积后的维度计算 4. max池化操作 5.卷积流程图 6.卷积层的反向传播 7.池化层的反向传播

    卷积神经网络的应用:卷积神经网络使用卷积提取图像的特征来进行图像的分类和识别       分类                        相似图像搜索                        ...

  6. 神经网络(9)--如何求参数: backpropagation algorithm(反向传播算法)

    Backpropagation algorithm(反向传播算法) Θij(l) is a real number. Forward propagation 上图是给出一个training examp ...

  7. <反向传播(backprop)>梯度下降法gradient descent的发展历史与各版本

    梯度下降法作为一种反向传播算法最早在上世纪由geoffrey hinton等人提出并被广泛接受.最早GD由很多研究团队各自发表,可他们大多无人问津,而hinton做的研究完整表述了GD方法,同时hin ...

  8. [源码解析] PyTorch 分布式(13) ----- DistributedDataParallel 之 反向传播

    [源码解析] PyTorch 分布式(13) ----- DistributedDataParallel 之 反向传播 目录 [源码解析] PyTorch 分布式(13) ----- Distribu ...

  9. 一文弄懂神经网络中的反向传播法——BackPropagation

    最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进 ...

  10. Backpropagation反向传播算法(BP算法)

    1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inp ...

随机推荐

  1. 使用OHOS SDK构建libpng

    参照OHOS IDE和SDK的安装方法配置好开发环境. 从github下载源码. 执行如下命令: git clone --depth=1 https://github.com/glennrp/libp ...

  2. 使用OHOS SDK构建filament

    参照OHOS IDE和SDK的安装方法配置好开发环境. 从gitee下载源码. 执行如下命令: git clone https://gitee.com/oh-graphics/filament.git ...

  3. 【福利活动】深度体验OpenHarmony对接华为云IoT

      本文主要介绍基于OpenHarmony 3.0来接入IoTDA,以BearPi-HM_Nano开发板为例,使用huaweicloud_iot_link SDK对接华为云物联网平台的简单流程.文末为 ...

  4. 本周四晚19:00知识赋能第七期第2课丨OpenHarmony WiFi扫描仪UX设计

    8月18日19:00~20:00,第七期知识赋能第二节直播就要开始啦!如果你是缺乏实战经验的学生,如果你是初出茅庐的职场新人,如果你是想参与开源的贡献者,那么本期的直播课将不容错过!通过本期直播,开发 ...

  5. 【译】如何在 Visual Studio 中安装 GitHub Copilot

    GitHub Copilot 简介 GitHub Copilot 是一个新工具,可以帮助您在人工智能的帮助下更快,更智能地编写代码.它可以建议代码补全,生成代码片段,甚至为您编写整个函数.GitHub ...

  6. 基于EtherNet/IP实现欧姆龙NX系列PLC通信

    1.引言 工业以太网协议 (Ethernet/IP) 是由ODVA所开发并得到了罗克韦尔自动化的强大支持.它使用已用于ControlNet和DeviceNet的控制和信息协议 (CIP) 为应用层协议 ...

  7. Python制作词云--stylecloud简单使用

    安装 pip install stylecloud 使用 from stylecloud import gen_stylecloud gen_stylecloud('zhangsan lisi wan ...

  8. LLM应用实战:当KBQA集成LLM

    1. 背景 应项目需求,本qiang~这两周全身心投入了进去. 项目是关于一个博物馆知识图谱,上层做KBQA应用.实现要求是将传统KBQA中的部分模块,如NLU.指代消解.实体对齐等任务,完全由LLM ...

  9. 前端使用 Konva 实现可视化设计器(4)

    给上一章做一个补充,就是实现通过上下左右按键移动所选节点. 继续求 Star ,希望大家多多一键三连,十分感谢大家的支持~ 创作不易,Star 50 个,创作加速! github源码 gitee源码 ...

  10. 鸿蒙开发套件之DevEco Profiler助您轻松分析应用性能问题

     作者:shizhengtao,华为性能调优工具专家 应用的性能优化一直以来都是开发者所面临的一大难题,在2023HDC大会上全新亮相的HarmonyOS NEXT开发者预览版,其中鸿蒙开发套件Dev ...