Problem Statement

You are given a string $S$ of length $N$ consisting of 0, 1, and ?.

You are also given $Q$ queries $(x_1, c_1), (x_2, c_2), \ldots, (x_Q, c_Q)$.

For each $i = 1, 2, \ldots, Q$, $x_i$ is an integer satisfying $1 \leq x_i \leq N$ and $c_i$ is one of the characters 0 , 1, and ?.

For $i = 1, 2, \ldots, Q$ in this order, do the following process for the query $(x_i, c_i)$.

  1. First, change the $x_i$-th character from the beginning of $S$ to $c_i$.
  2. Then, print the number of non-empty strings, modulo $998244353$, that can be obtained as a (not necessarily contiguous) subsequence of $S$ after replacing each occurrence of ? in $S$ with 0 or 1 independently.

Constraints

  • $1 \leq N, Q \leq 10^5$
  • $N$ and $Q$ are integers.
  • $S$ is a string of length $N$ consisting of 0, 1, and ?.
  • $1 \leq x_i \leq N$
  • $c_i$ is one of the characters 0 , 1, and ?.

Input

Input is given from Standard Input in the following format:

$N$ $Q$
$S$
$x_1$ $c_1$
$x_2$ $c_2$
$\vdots$
$x_Q$ $c_Q$

Output

Print $Q$ lines. For each $i = 1, 2, \ldots, Q$, the $i$-th line should contain the answer to the $i$-th query $(x_i, c_i)$ (that is, the number of strings modulo $998244353$ at the step 2. in the statement).


Sample Input 1

3 3
100
2 1
2 ?
3 ?

Sample Output 1

5
7
10
  • The $1$-st query starts by changing $S$ to 110. Five strings can be obtained as a subsequence of $S = $ 110: 0, 1, 10, 11, 110. Thus, the $1$-st query should be answered by $5$.

  • The $2$-nd query starts by changing $S$ to 1?0. Two strings can be obtained by the ? in $S = $ 1?0: 100 and 110. Seven strings can be obtained as a subsequence of one of these strings: 0, 1, 00, 10, 11, 100, 110. Thus, the $2$-nd query should be answered by $7$.

  • The $3$-rd query starts by changing $S$ to 1??. Four strings can be obtained by the ?'s in $S = $ 1??: 100, 101, 110, 111. Ten strings can be obtained as a subsequence of one of these strings: 0, 1, 00, 01, 10, 11, 100, 101, 110, 111. Thus, the $3$-rd query should be answered by $10$.


Sample Input 2

40 10
011?0??001??10?0??0?0?1?11?1?00?11??0?01
5 0
2 ?
30 ?
7 1
11 1
3 1
25 1
40 0
12 1
18 1

Sample Output 2

746884092
532460539
299568633
541985786
217532539
217532539
217532539
573323772
483176957
236273405

Be sure to print the count modulo $998244353$.

如果这个问题不是动态的,那要怎么做?想到dp做法。

定义 \(dp_{i,0/1}\) 为在前 \(i\) 个字符的所有子序列中,如果再加上 \(0/1\) 这个字符后,就不是前 \(i\) 个字符的子序列了的子序列个数。

那么如果遇到一个 \(1\),那么就相当于给所有加上 \(1\) 不属于前 \(i\) 个数的子序列加上了一个 \(1\),\(dp_{i,1}=dp_{i-1,1}\),然后新生成的这些子序列肯定再加上 \(0\) 后不属于前面的子序列,\(dp_{i,0}=dp_{i-1,1}+dp_{i-1,0}\).

如果遇到一个 \(0\) ,同理。遇到一个问好,\(dp_{i,1}=dp_{i,0}=dp_{i-1,1}+dp_{i-1,0}\)。

另开一个变量统计答案就可以了。

然后就要开始动态 dp,设 \((dp_0,dp_1,ans)\)为一个向量

遇到一个\(1\),向量乘上 \(\begin{Bmatrix}1&0&0\\1&1&1\\0&0&1 \end{Bmatrix}\)

遇到一个\(0\),向量乘上 \(\begin{Bmatrix}1&1&1\\0&1&0\\0&0&1 \end{Bmatrix}\)

遇到一个\(?\),向量乘上 \(\begin{Bmatrix}1&1&1\\1&1&1\\0&0&1 \end{Bmatrix}\)

剩下的就是用线段树维护矩阵乘法,单点修改,区间查询就可以了。

#include<bits/stdc++.h>
const int N=1e5+5,P=998244353;
int n,q,x;
char c;
struct matrix{
int a[4][4];
}t[3],tr[N<<2],p,dw;
matrix cheng(matrix a,matrix b)
{
matrix c;
memset(c.a,0,sizeof(c.a));
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
for(int k=1;k<=3;k++)
c.a[i][j]+=1LL*a.a[i][k]*b.a[k][j]%P,c.a[i][j]%=P;
return c;
}
int turn(char c)
{
if(c<='1')
return c-'0';
return 2;
}
void copy(matrix&a,matrix b)
{
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
a.a[i][j]=b.a[i][j];
}
void build(int o,int l,int r)
{
// printf("%d %d %d\n",o,l,r);
if(l>r)
return;
if(l==r)
{
scanf(" %c",&c);
copy(tr[o],t[turn(c)]);
return;
}
int md=l+r>>1;
build(o<<1,l,md);
build(o<<1|1,md+1,r);
copy(tr[o],cheng(tr[o<<1],tr[o<<1|1]));
}
void update(int o,int l,int r,int x,int y)
{
if(l==r)
{
copy(tr[o],t[y]);
return;
}
int md=l+r>>1;
if(md>=x)
update(o<<1,l,md,x,y);
else
update(o<<1|1,md+1,r,x,y);
copy(tr[o],cheng(tr[o<<1],tr[o<<1|1]));
}
int main()
{
scanf("%d%d",&n,&q);
p.a[1][1]=p.a[1][2]=1;
dw.a[1][1]=dw.a[2][2]=dw.a[3][3]=1;
for(int i=0;i<(N<<2);i++)
copy(tr[i],dw);
t[0].a[1][1]=t[0].a[2][1]=t[0].a[2][2]=t[0].a[2][3]=t[0].a[3][3]=1;
t[1].a[1][1]=t[1].a[1][2]=t[1].a[1][3]=t[1].a[2][2]=t[1].a[3][3]=1;
t[2].a[1][1]=t[2].a[1][2]=t[2].a[1][3]=t[2].a[2][1]=t[2].a[2][2]=t[2].a[2][3]=t[2].a[3][3]=1;
build(1,1,n);
while(q--)
{
scanf("%d %c",&x,&c);
update(1,1,n,x,turn(c));
printf("%d\n",cheng(p,tr[1]).a[1][3]);
}
}

[ABC246Ex] 01? Queries的更多相关文章

  1. Codeforces Round #371 (Div. 2) C. Sonya and Queries[Map|二进制]

    C. Sonya and Queries time limit per test 1 second memory limit per test 256 megabytes input standard ...

  2. Profiling MySQL queries from Performance Schema

    转自:http://www.percona.com/blog/2015/04/16/profiling-mysql-queries-from-performance-schema/ When opti ...

  3. 数据结构(线段树):CodeForces 145E Lucky Queries

    E. Lucky Queries time limit per test 3 seconds memory limit per test 256 megabytes input standard in ...

  4. Save results to different files when executing multi SQL statements in DB Query Analyzer 7.01

        1 About DB Query Analyzer DB Query Analyzer is presented by Master Genfeng,Ma from Chinese Mainl ...

  5. The new powerful SQL executing schedule monthly or weekly in DB Query Analyzer 7.01

    1 About DB Query Analyzer DB Query Analyzer is presented by Master Genfeng,Ma from Chinese Mainland. ...

  6. DB Query Analyzer 6.01 is released, SQL Execute Schedule function can be used

       DB Query Analyzer is presented by Master Gen feng, Ma from Chinese Mainland. It has English versi ...

  7. HDU6191(01字典树启发式合并)

    Query on A Tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Othe ...

  8. 01: docker 基本使用

    1.1 docker基础 1.docker与虚拟机比较 2.docker版本 1. 社区版(Community Edition, CE) 2. 企业版(Enterprise Edition, EE) ...

  9. Codeforces Round #371 (Div. 2) C. Sonya and Queries 水题

    C. Sonya and Queries 题目连接: http://codeforces.com/contest/714/problem/C Description Today Sonya learn ...

  10. CSS3 响应式web设计,CSS3 Media Queries

    两种方式,一种是直接在link中判断设备的尺寸,然后引用不同的css文件: <link rel="stylesheet" type="text/css" ...

随机推荐

  1. ATtiny88初体验(六):SPI

    ATtiny88初体验(六):SPI SPI介绍 ATtiny88自带SPI模块,可以实现数据的全双工三线同步传输.它支持主从两种模式,可以配置为LSB或者MSB优先传输,有7种可编程速率,支持从空闲 ...

  2. 运用手机运营商二要素Api接口,守护您的账户和隐私,让您安心使用!

    随着移动互联网的普及,我们的生活离不开手机,手机成为了我们生活中不可或缺的一部分.但是随着移动支付的普及,手机支付在我们的生活中也变得越来越重要.手机支付是一种方便快捷的支付方式,但是也存在一些安全隐 ...

  3. 用 Rust 的 declarative macro 做了个小东西

    最近几天在弄 ddnspod 的时候,写了个宏: custom_meta_struct 解决什么问题 #[derive(Debug, Clone, serde::Serialize, serde::D ...

  4. 2.14 PE结构:地址之间的转换

    在可执行文件PE文件结构中,通常我们需要用到地址转换相关知识,PE文件针对地址的规范有三种,其中就包括了VA,RVA,FOA三种,这三种该地址之间的灵活转换也是非常有用的,本节将介绍这些地址范围如何通 ...

  5. 鞭尸没 jj

      提前退役了.现在我想说一点无关紧要的闲话.   与其说是 OI 回忆录,不如说是对这主线明确的六年做的一个梳理,倒不一定 OI 强相关. 壹.零度下的相遇 视线就这样交叠 与你   最初接触到 O ...

  6. js合并对象常用方法

    const person = { name: 'David Walsh', gender: 'Male' }; const tools = { computer: 'Mac', editor: 'At ...

  7. C语言指针函数和函数指针区别(转)

    C语言函数指针和指针函数的区别C和C++中经常会用到指针,和数据项一样,函数也是有地址的,函数的地址是存储其机器语言代码的内存的开始地址. 指针函数和函数指针经常会混淆,一个是返回指针的函数,另一个是 ...

  8. PostgreSQL主备库搭建

    pg主备库的搭建,首先需在2个节点安装pg软件,然后依次在2个节点配置主备. 本文采用os为CentOS7.6,pg版本使用14.2,以下为详细部署步骤. 本文两个节点的ip地址如下: [root@n ...

  9. 我在前端写Java SpringBoot项目

    前言 玩归玩,闹归闹,别拿 C端 开玩笑! 这里不推荐大家把Node服务作为C端服务,毕竟它是单线程多任务 机制. 这一特性是 Javascript 语言设计之初,就决定了它的使命 - Java &g ...

  10. [SWPUCTF 2021 新生赛]sql

    看到网站上写着参数是wllm,就用wllm=1试了一下,发现是SQL注入 查找字段数时,提示请勿非法操作 说明空格出现过滤,可以用/**/绕过 http://1.14.71.254:28347/?wl ...