Problem Statement

You are given a string $S$ of length $N$ consisting of 0, 1, and ?.

You are also given $Q$ queries $(x_1, c_1), (x_2, c_2), \ldots, (x_Q, c_Q)$.

For each $i = 1, 2, \ldots, Q$, $x_i$ is an integer satisfying $1 \leq x_i \leq N$ and $c_i$ is one of the characters 0 , 1, and ?.

For $i = 1, 2, \ldots, Q$ in this order, do the following process for the query $(x_i, c_i)$.

  1. First, change the $x_i$-th character from the beginning of $S$ to $c_i$.
  2. Then, print the number of non-empty strings, modulo $998244353$, that can be obtained as a (not necessarily contiguous) subsequence of $S$ after replacing each occurrence of ? in $S$ with 0 or 1 independently.

Constraints

  • $1 \leq N, Q \leq 10^5$
  • $N$ and $Q$ are integers.
  • $S$ is a string of length $N$ consisting of 0, 1, and ?.
  • $1 \leq x_i \leq N$
  • $c_i$ is one of the characters 0 , 1, and ?.

Input

Input is given from Standard Input in the following format:

$N$ $Q$
$S$
$x_1$ $c_1$
$x_2$ $c_2$
$\vdots$
$x_Q$ $c_Q$

Output

Print $Q$ lines. For each $i = 1, 2, \ldots, Q$, the $i$-th line should contain the answer to the $i$-th query $(x_i, c_i)$ (that is, the number of strings modulo $998244353$ at the step 2. in the statement).


Sample Input 1

3 3
100
2 1
2 ?
3 ?

Sample Output 1

5
7
10
  • The $1$-st query starts by changing $S$ to 110. Five strings can be obtained as a subsequence of $S = $ 110: 0, 1, 10, 11, 110. Thus, the $1$-st query should be answered by $5$.

  • The $2$-nd query starts by changing $S$ to 1?0. Two strings can be obtained by the ? in $S = $ 1?0: 100 and 110. Seven strings can be obtained as a subsequence of one of these strings: 0, 1, 00, 10, 11, 100, 110. Thus, the $2$-nd query should be answered by $7$.

  • The $3$-rd query starts by changing $S$ to 1??. Four strings can be obtained by the ?'s in $S = $ 1??: 100, 101, 110, 111. Ten strings can be obtained as a subsequence of one of these strings: 0, 1, 00, 01, 10, 11, 100, 101, 110, 111. Thus, the $3$-rd query should be answered by $10$.


Sample Input 2

40 10
011?0??001??10?0??0?0?1?11?1?00?11??0?01
5 0
2 ?
30 ?
7 1
11 1
3 1
25 1
40 0
12 1
18 1

Sample Output 2

746884092
532460539
299568633
541985786
217532539
217532539
217532539
573323772
483176957
236273405

Be sure to print the count modulo $998244353$.

如果这个问题不是动态的,那要怎么做?想到dp做法。

定义 \(dp_{i,0/1}\) 为在前 \(i\) 个字符的所有子序列中,如果再加上 \(0/1\) 这个字符后,就不是前 \(i\) 个字符的子序列了的子序列个数。

那么如果遇到一个 \(1\),那么就相当于给所有加上 \(1\) 不属于前 \(i\) 个数的子序列加上了一个 \(1\),\(dp_{i,1}=dp_{i-1,1}\),然后新生成的这些子序列肯定再加上 \(0\) 后不属于前面的子序列,\(dp_{i,0}=dp_{i-1,1}+dp_{i-1,0}\).

如果遇到一个 \(0\) ,同理。遇到一个问好,\(dp_{i,1}=dp_{i,0}=dp_{i-1,1}+dp_{i-1,0}\)。

另开一个变量统计答案就可以了。

然后就要开始动态 dp,设 \((dp_0,dp_1,ans)\)为一个向量

遇到一个\(1\),向量乘上 \(\begin{Bmatrix}1&0&0\\1&1&1\\0&0&1 \end{Bmatrix}\)

遇到一个\(0\),向量乘上 \(\begin{Bmatrix}1&1&1\\0&1&0\\0&0&1 \end{Bmatrix}\)

遇到一个\(?\),向量乘上 \(\begin{Bmatrix}1&1&1\\1&1&1\\0&0&1 \end{Bmatrix}\)

剩下的就是用线段树维护矩阵乘法,单点修改,区间查询就可以了。

#include<bits/stdc++.h>
const int N=1e5+5,P=998244353;
int n,q,x;
char c;
struct matrix{
int a[4][4];
}t[3],tr[N<<2],p,dw;
matrix cheng(matrix a,matrix b)
{
matrix c;
memset(c.a,0,sizeof(c.a));
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
for(int k=1;k<=3;k++)
c.a[i][j]+=1LL*a.a[i][k]*b.a[k][j]%P,c.a[i][j]%=P;
return c;
}
int turn(char c)
{
if(c<='1')
return c-'0';
return 2;
}
void copy(matrix&a,matrix b)
{
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
a.a[i][j]=b.a[i][j];
}
void build(int o,int l,int r)
{
// printf("%d %d %d\n",o,l,r);
if(l>r)
return;
if(l==r)
{
scanf(" %c",&c);
copy(tr[o],t[turn(c)]);
return;
}
int md=l+r>>1;
build(o<<1,l,md);
build(o<<1|1,md+1,r);
copy(tr[o],cheng(tr[o<<1],tr[o<<1|1]));
}
void update(int o,int l,int r,int x,int y)
{
if(l==r)
{
copy(tr[o],t[y]);
return;
}
int md=l+r>>1;
if(md>=x)
update(o<<1,l,md,x,y);
else
update(o<<1|1,md+1,r,x,y);
copy(tr[o],cheng(tr[o<<1],tr[o<<1|1]));
}
int main()
{
scanf("%d%d",&n,&q);
p.a[1][1]=p.a[1][2]=1;
dw.a[1][1]=dw.a[2][2]=dw.a[3][3]=1;
for(int i=0;i<(N<<2);i++)
copy(tr[i],dw);
t[0].a[1][1]=t[0].a[2][1]=t[0].a[2][2]=t[0].a[2][3]=t[0].a[3][3]=1;
t[1].a[1][1]=t[1].a[1][2]=t[1].a[1][3]=t[1].a[2][2]=t[1].a[3][3]=1;
t[2].a[1][1]=t[2].a[1][2]=t[2].a[1][3]=t[2].a[2][1]=t[2].a[2][2]=t[2].a[2][3]=t[2].a[3][3]=1;
build(1,1,n);
while(q--)
{
scanf("%d %c",&x,&c);
update(1,1,n,x,turn(c));
printf("%d\n",cheng(p,tr[1]).a[1][3]);
}
}

[ABC246Ex] 01? Queries的更多相关文章

  1. Codeforces Round #371 (Div. 2) C. Sonya and Queries[Map|二进制]

    C. Sonya and Queries time limit per test 1 second memory limit per test 256 megabytes input standard ...

  2. Profiling MySQL queries from Performance Schema

    转自:http://www.percona.com/blog/2015/04/16/profiling-mysql-queries-from-performance-schema/ When opti ...

  3. 数据结构(线段树):CodeForces 145E Lucky Queries

    E. Lucky Queries time limit per test 3 seconds memory limit per test 256 megabytes input standard in ...

  4. Save results to different files when executing multi SQL statements in DB Query Analyzer 7.01

        1 About DB Query Analyzer DB Query Analyzer is presented by Master Genfeng,Ma from Chinese Mainl ...

  5. The new powerful SQL executing schedule monthly or weekly in DB Query Analyzer 7.01

    1 About DB Query Analyzer DB Query Analyzer is presented by Master Genfeng,Ma from Chinese Mainland. ...

  6. DB Query Analyzer 6.01 is released, SQL Execute Schedule function can be used

       DB Query Analyzer is presented by Master Gen feng, Ma from Chinese Mainland. It has English versi ...

  7. HDU6191(01字典树启发式合并)

    Query on A Tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Othe ...

  8. 01: docker 基本使用

    1.1 docker基础 1.docker与虚拟机比较 2.docker版本 1. 社区版(Community Edition, CE) 2. 企业版(Enterprise Edition, EE) ...

  9. Codeforces Round #371 (Div. 2) C. Sonya and Queries 水题

    C. Sonya and Queries 题目连接: http://codeforces.com/contest/714/problem/C Description Today Sonya learn ...

  10. CSS3 响应式web设计,CSS3 Media Queries

    两种方式,一种是直接在link中判断设备的尺寸,然后引用不同的css文件: <link rel="stylesheet" type="text/css" ...

随机推荐

  1. ECharts图表动态修改series显示隐藏

    目录 1.前言 2.思路 3.实现 1.前言 最近做的大数据平台,里面很多地方用到了ECharts,其中有个功能,要求将图表分组,根据用户选择的组,来确定ECharts要显示那些线条和柱子,也就是动态 ...

  2. 用 ChatGPT 做一个 Chrome 扩展 | 京东云技术团队

    用ChatGPT做了个Chrome Extension 最近科技圈儿最火的话题莫过于ChatGPT了. 最近又发布了GPT-4,发布会上的Demo着实吸睛. 笔记本上手画个网页原型,直接生成网页.网友 ...

  3. fastapi启动后访问docs不显示页面的问题

    笔者之前正常使用fastapi的docs接口进行各种接口调试,使用很正常,之前安装也都是正常安装流程,没有做任何修改,可以突然有一天不知道为啥,docs接口打开是空白的,接口也没有报错,就是空白,摸索 ...

  4. 从零开发Java入门项目--十天掌握

    ​ 原文网址:从零开发Java入门项目--十天掌握_IT利刃出鞘的博客-CSDN博客 简介 这是一个靠谱的Java入门项目实战,名字叫蚂蚁爱购.从零开发项目,视频加文档,十天就能学会开发Java项目, ...

  5. 【题解】AtCoder Beginner Contest 318(D - Ex)

    赛时过了 A-G,Ex 仿佛猜到了结论但是完全不懂多项式科技,就炸了. 大家好像都秒了 A,B,C 就不写了. D.General Weighted Max Matching 题目描述: 给你一个加权 ...

  6. xv6 中的进程切换:MIT6.s081/6.828 lectrue11:Scheduling 以及 Lab6 Thread 心得

    絮絮叨 这两节主要介绍 xv6 中的线程切换,首先预警说明,这节课程的容量和第 5/6 节:进程的用户态到内核态的切换一样,细节多到爆炸,连我自己复习时都有点懵,看来以后不能偷懒了,学完课程之后要马上 ...

  7. Github的一个奇技淫巧

    背景 前段时间给 VictoriaLogs 提交了一个 PR: https://github.com/VictoriaMetrics/VictoriaMetrics/pull/4934 本来一切都很顺 ...

  8. 「codeforces - 1608F」MEX counting

    link. 首先考虑暴力,枚举规划前缀 \([1, i]\) 和前缀 mex \(x\),则我们需要 \(x\) 个数来填了 \([0, x)\),还剩下 \(i-x\) 个数随便填 \([0, x) ...

  9. Llama2-Chinese项目:2.3-预训练使用QA还是Text数据集?

      Llama2-Chinese项目给出pretrain的data为QA数据格式,可能会有疑问pretrain不应该是Text数据格式吗?而在Chinese-LLaMA-Alpaca-2和open-l ...

  10. 【matplotlib 实战】--折线图

    折线图是一种用于可视化数据变化趋势的图表,它可以用于表示任何数值随着时间或类别的变化. 折线图由折线段和折线交点组成,折线段表示数值随时间或类别的变化趋势,折线交点表示数据的转折点. 折线图的方向表示 ...