线性DP——花店橱窗

谨以此题解献给线性dp最后一道题

题目大致

Description

xq和他的老婆xz最近开了一家花店,他们准备把店里最好看的花都摆在橱窗里。但是他们有很多花瓶,每个花瓶都具有各自的特点,因此,当各个花瓶中放入不同的花束时,会产生不同的美学效果。为了使橱窗里的花摆放的最合适,他们得想个办法安排每种花的摆放位置。

可是因为xq和xz每天都太忙,没有时间设计橱窗里花的摆法,所以他们想让你帮他们求出花摆放的最大美观程度和每种花所放的位置。

注:标号小花必须放在标号大的前面。

每种花放在不同的瓶子里会产生不同的美观程度,美观程度可能是正数也可能是负数。

上述例子中,花瓶与花束的不同搭配所具有的美观程度,如下表所示:

花 瓶

1 2 3 4 5

1 (杜鹃花) 7 23 -5 -24 16

2 (秋海棠) 5 21 -4 10 23

3 (康乃馨) -21 5 -4 -20 20

根据上表,杜鹃花放在花瓶2中,会显得非常好看;但若放在花瓶4中则显得十分难看。

Input Format

第1行:两个整数F和V,表示xq和xz一共有F种花,V个花瓶。(1<=F<=V<=100)

第2行到第F+1行:每行有V个数,表示花摆放在不同花瓶里的美观程度值value。(美观程度和不超过maxint,美观程度有正有负。)

Output Format

输出有两行:第一行为输出最大美观程度和的值,第二行有F个数表示每朵花应该摆放的花瓶的编号。

Sample

样例输入
3 5
7 23 -5 -24 16
5 21 -4 10 23
-21 5 -4 -20 20
样例输出
53
2 4 5

Hint

其实就是简单的DP,花店橱窗问题啦。

注意尽量靠前放啊!

解析

在题目中有几个比较重要的地方:

  1. 所有花都要按照规定的顺序排放
  2. 如有美观程度相等的方案,花遵循靠前放置的原则
  3. 本题涉及负数

我们再来看如何求解

先看样例:因为要顺序排放,所以我们先看1号花。1号花可以摆在1、2、3号花瓶,但不能摆在3,4号花瓶,否则剩下的两朵花就没有地方了。同样,2号花可以摆在2、3、4号花瓶,但不能摆在1、5上,否则1、3号花就没有位置了。

1 2 3 4 5
1 true true true false false
2 false true true true false
3 false false true true true

于是我们可以得出规律:我们只需要更新第\(i\)到第\(V-F+i\) (\(i\)为花的编号)的dp就可以了。也就是只更新绿色位置的dp状态。

然后,根据题目可知,花要顺序摆放,那么第\(i\)朵花也一定和第\(i-1\)的花有关。看样例:

下面的表格表示dp状态。我们令dp[花的编号][花瓶编号]。第一朵花没有前面的花,所以直接根据美观程度更新。第4、5号位不更新。

1 2 3 4 5
1 7 23 -5 0 0
2

接着更新dp[2],2、5号位不更新。第2号位置只能由dp[1][1]来更新,所以直接继承。dp[2][2] = dp[1][1] + w[2][2]。w表示不同花在不同花瓶的美观程度。

1 2 3 4 5
1 7 23 -5 0 0
2 7+21=28

更新dp[2][3]时,为了达到最大,需要找到dp[1][1]dp[1][2]的最大值,也就是dp[1][2]

1 2 3 4 5
1 7 23 -5 0 0
2 28 23+(-4)=19

同理可得:

1 2 3 4 5
1 7 23 -5 0 0
2 28 19 23+10=33
1 2 3 4 5
1 7 23 -5 0 0
2 7(无用) 28 19 33 0
3 7(无用) 28(无用) 24 8 53

易得,最大美观值为53。所以dp状态转移方程为\(dp[i][j]\, =\, max\left \{ {dp[i-1][k]} \right \} \, +\, w[i][j]\, \, (k\in [i-1,\, j-1])\)。

由于\(i\)只和\(i-1\)有关,可以使用滚动数组优化。去掉dp一个维度的同时,注意循环中\(k\)的方向要从后往前。最后在dp[\(F\)]中找到最大答案。

记录路径也很好实现。开个数组p[i][j]记录前驱。具体实现看代码。

#include<bits/stdc++.h>
using namespace std;
#define s(n) scanf("%d", &n)
int ed, num, dt=1, mx, v, f, ans, w[102][102], dp[102], p[102][102];
inline void pt(int a, int b){ //输出路径
if(a == 1){
printf("%d", b);
return;
}
pt(a-1, p[a][b]);
printf(" %d", b);
}
int main(){
s(f), s(v);
for(int i=1; i<=f; ++i) //读入数据
for(int j=1; j<=v; ++j)
s(w[i][j]);
for(int i=1; i<=f; ++i){
for(int j=v-f+i; j>=i; --j){ //因为要自我滚动,所以从后往前循环
for(int z=i-1; z<j; ++z){
if(z == i-1) mx = dp[z], num = z;
else if(mx < dp[z]) mx = dp[z], num = z;
}
dp[j] = mx + w[i][j];
p[i][j] = num;
if(i == f){
if(dt) ans = dp[j], dt = 0, ed = j;
else if(ans <= dp[j]) ans = dp[j], ed = j; //注意 一定是小于等于 因为要靠前放
}
}
}
printf("%d\n", ans);
pt(f, ed); //输出路径
return 0;
}

the end

花店橱窗(线性DP)的更多相关文章

  1. 【洛谷P1854】花店橱窗 线性dp+路径输出

    题目大意:给定 N 个数字,编号分别从 1 - N,M 个位置,N 个数字按照相对大小顺序放在 M 个位置里,每个数放在每个位置上有一个对答案的贡献值,求一种摆放方式使得贡献值最大. 题解:一道典型的 ...

  2. CH5E02 [IOI1999]花店橱窗[暴力dp]

    众所周知,这个人太菜了,所以她又来切水题了. 显然设计状态表示第$i$朵花放第$j$瓶中的最大价值.然后瞎转移一波是n三方的,加个前缀max变成n方就水过去了. 当然这题可以搜索剪枝的. 虐lyd书上 ...

  3. CH5E02 花店橱窗【线性DP】

    5E02 花店橱窗 0x5E「动态规划」练习 背景 xq和他的老婆xz最近开了一家花店,他们准备把店里最好看的花都摆在橱窗里.但是他们有很多花瓶,每个花瓶都具有各自的特点,因此,当各个花瓶中放入不同的 ...

  4. AcWing 313. 花店橱窗 (线性DP)打卡

    题目:https://www.acwing.com/problem/content/315/ 题意:有一个矩阵,你需要在每一行选择一个数,必须保证前一行的数的下标选择在下一行的左边,即下标有单调性,然 ...

  5. [IOI1999]花店橱窗布置(DP路径记录)

    题目:[IOI1999]花店橱窗布置 问题编号:496 题目描述 某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定的,从左到右按1到V顺序编号,V ...

  6. 线性dp

    线性dp应该是dp中比较简单的一类,不过也有难的.(矩乘优化递推请出门右转) 线性dp一般是用前面的状态去推后面的,也有用后面往前面推的,这时候把循环顺序倒一倒就行了.如果有的题又要从前往后推又要从后 ...

  7. 花店橱窗(flower)

    花店橱窗(flower) 题目描述 某花店现有f束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定的,从左到右按1到V顺序编号,V是花瓶的数目.花束可以移动,并 ...

  8. 洛谷P1854 花店橱窗布置 分析+题解代码

    洛谷P1854 花店橱窗布置 分析+题解代码 蒟蒻的第一道提高+/省选-,纪念一下. 题目描述: 某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定 ...

  9. [JOYOI] 1124 花店橱窗

    题目限制 时间限制 内存限制 评测方式 题目来源 1000ms 131072KiB 标准比较器 Local 题目背景 xq和他的老婆xz最近开了一家花店,他们准备把店里最好看的花都摆在橱窗里.但是他们 ...

  10. RQNOJ PID496/[IOI1999]花店橱窗布置

    PID496 / [IOI1999]花店橱窗布置 ☆   题目描述 某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定的,从左到右按1到V顺序 编号 ...

随机推荐

  1. 用CSS3绘制iPhone手机

    Tips:当你看到这个提示的时候,说明当前的文章是由原emlog博客系统搬迁至此的,文章发布时间已过于久远,编排和内容不一定完整,还请谅解` 用CSS3绘制iPhone手机 日期:2017-7-3 阿 ...

  2. 深入了解 C# Span:高性能内存操作的利器

    深入了解 C# Span:高性能内存操作的利器 在 C# 7.2 中引入的 Span<T> 类型为我们提供了一种高效且安全地对内存进行操作的方式.Span<T> 是一个轻量级的 ...

  3. Tarjan 求有向图的强连通分量

    重温Tarjan, 网上看了许多博客感觉都讲的不清楚. 故传上来自己的笔记, 希望帮到大家. 提到的一些概念可以参考 oi wiki, 代码也是 oi wiki 的, 因为我不认为我能写出比大佬更好的 ...

  4. textFieldShouldReturn: 方法无效化!

    问题描述 不管如何在键盘上点击return,textFieldShouldReturn:方法一直没有调用. 问题代码 @interface ViewController : UIViewControl ...

  5. Golang线程池gpool

    背景 golang中使用并发要考虑很多问题,如控制并发量.等待Goroutine执行完毕等. 看下面一段代码: var wg sync.WaitGroup count := 10 wg.Add(cou ...

  6. .NET项目中使用HtmlSanitizer防止XSS攻击

    .NET项目中使用HtmlSanitizer防止XSS攻击 前言 最近博客也是上线了留言板功能,但是没有做审核(太懒了),然后在留言的时候可以输入<script>alert('xss')& ...

  7. 记一次难忘的json反序列化问题排查经历

    前言 最近我在做知识星球中的商品秒杀系统,昨天遇到了一个诡异的json反序列化问题,感觉挺有意思的,现在拿出来跟大家一起分享一下,希望对你会有所帮助. 案发现场 我最近在做知识星球中的商品秒杀系统,写 ...

  8. 创建docker

    创建docker 准备实验环境 1. 安装前准备 Centos7 Linux 内核:官方建议 3.10 以上,3.8以上貌似也可. 1.1 查看当前的内核版本 uname -r 1.2 使用 root ...

  9. 《DNK210使用指南 -CanMV版 V1.0》第四章 基于CanMV的C开发环境搭建

    第四章 基于CanMV的C开发环境搭建 1)实验平台:正点原子DNK210开发板 2) 章节摘自[正点原子]DNK210使用指南 - CanMV版 V1.0 3)购买链接:https://detail ...

  10. 3.8折年终钜惠,RK3568J国产工业评估板

    3.8折年终钜惠,RK3568J国产工业评估板活动火热进行中,错过等一年! -核心板国产化率100%,提供报告-瑞芯微四核ARM Cortex-A55@1.8GHz-4K视频解码.1080P视频编码. ...