PEB结构(Process Envirorment Block Structure)其中文名是进程环境块信息,进程环境块内部包含了进程运行的详细参数信息,每一个进程在运行后都会存在一个特有的PEB结构,通过附加进程并遍历这段结构即可得到非常多的有用信息。

在应用层下,如果想要得到PEB的基地址只需要取fs:[0x30]即可,TEB线程环境块则是fs:[0x18],如果在内核层想要得到应用层进程的PEB信息我们需要调用特定的内核函数来获取。

在内核层要获取应用层进程的PEB结构,可以通过以下步骤实现:

  • 1.调用内核函数PsGetCurrentProcess获取当前进程的EPROCESS结构。
  • 2.调用内核函数KeStackAttachProcess,附加到目标进程。
  • 3.调用内核函数PsGetProcessWow64Process,获取目标进程的PEB结构信息。
  • 4.通过PEB结构的Ldr成员可以访问到该进程加载的所有模块,遍历整个Ldr链表即可得到需要的模块信息。
  • 5.遍历完成后,通过调用KeUnstackDetachProcess函数脱离进程空间。

首先在开始写代码之前需要先定义好PEB进程环境快结构体,用于对内存指针解析,新建peb.h文件并保存如下代码,这些是微软的结构定义分为32位与64位,官方定义规范而已不需要费工夫。

#pragma once
#include <ntifs.h> typedef struct _CURDIR // 2 elements, 0x18 bytes (sizeof)
{
/*0x000*/ struct _UNICODE_STRING DosPath; // 3 elements, 0x10 bytes (sizeof)
/*0x010*/ VOID* Handle;
}CURDIR, *PCURDIR; typedef struct _RTL_DRIVE_LETTER_CURDIR // 4 elements, 0x18 bytes (sizeof)
{
/*0x000*/ UINT16 Flags;
/*0x002*/ UINT16 Length;
/*0x004*/ ULONG32 TimeStamp;
/*0x008*/ struct _STRING DosPath; // 3 elements, 0x10 bytes (sizeof)
}RTL_DRIVE_LETTER_CURDIR, *PRTL_DRIVE_LETTER_CURDIR; typedef enum _SYSTEM_DLL_TYPE // 7 elements, 0x4 bytes
{
PsNativeSystemDll = 0 /*0x0*/,
PsWowX86SystemDll = 1 /*0x1*/,
PsWowArm32SystemDll = 2 /*0x2*/,
PsWowAmd64SystemDll = 3 /*0x3*/,
PsWowChpeX86SystemDll = 4 /*0x4*/,
PsVsmEnclaveRuntimeDll = 5 /*0x5*/,
PsSystemDllTotalTypes = 6 /*0x6*/
}SYSTEM_DLL_TYPE, *PSYSTEM_DLL_TYPE; typedef struct _EWOW64PROCESS // 3 elements, 0x10 bytes (sizeof)
{
/*0x000*/ VOID* Peb;
/*0x008*/ UINT16 Machine;
/*0x00A*/ UINT8 _PADDING0_[0x2];
/*0x00C*/ enum _SYSTEM_DLL_TYPE NtdllType;
}EWOW64PROCESS, *PEWOW64PROCESS; typedef struct _RTL_USER_PROCESS_PARAMETERS // 37 elements, 0x440 bytes (sizeof)
{
/*0x000*/ ULONG32 MaximumLength;
/*0x004*/ ULONG32 Length;
/*0x008*/ ULONG32 Flags;
/*0x00C*/ ULONG32 DebugFlags;
/*0x010*/ VOID* ConsoleHandle;
/*0x018*/ ULONG32 ConsoleFlags;
/*0x01C*/ UINT8 _PADDING0_[0x4];
/*0x020*/ VOID* StandardInput;
/*0x028*/ VOID* StandardOutput;
/*0x030*/ VOID* StandardError;
/*0x038*/ struct _CURDIR CurrentDirectory; // 2 elements, 0x18 bytes (sizeof)
/*0x050*/ struct _UNICODE_STRING DllPath; // 3 elements, 0x10 bytes (sizeof)
/*0x060*/ struct _UNICODE_STRING ImagePathName; // 3 elements, 0x10 bytes (sizeof)
/*0x070*/ struct _UNICODE_STRING CommandLine; // 3 elements, 0x10 bytes (sizeof)
/*0x080*/ VOID* Environment;
/*0x088*/ ULONG32 StartingX;
/*0x08C*/ ULONG32 StartingY;
/*0x090*/ ULONG32 CountX;
/*0x094*/ ULONG32 CountY;
/*0x098*/ ULONG32 CountCharsX;
/*0x09C*/ ULONG32 CountCharsY;
/*0x0A0*/ ULONG32 FillAttribute;
/*0x0A4*/ ULONG32 WindowFlags;
/*0x0A8*/ ULONG32 ShowWindowFlags;
/*0x0AC*/ UINT8 _PADDING1_[0x4];
/*0x0B0*/ struct _UNICODE_STRING WindowTitle; // 3 elements, 0x10 bytes (sizeof)
/*0x0C0*/ struct _UNICODE_STRING DesktopInfo; // 3 elements, 0x10 bytes (sizeof)
/*0x0D0*/ struct _UNICODE_STRING ShellInfo; // 3 elements, 0x10 bytes (sizeof)
/*0x0E0*/ struct _UNICODE_STRING RuntimeData; // 3 elements, 0x10 bytes (sizeof)
/*0x0F0*/ struct _RTL_DRIVE_LETTER_CURDIR CurrentDirectores[32];
/*0x3F0*/ UINT64 EnvironmentSize;
/*0x3F8*/ UINT64 EnvironmentVersion;
/*0x400*/ VOID* PackageDependencyData;
/*0x408*/ ULONG32 ProcessGroupId;
/*0x40C*/ ULONG32 LoaderThreads;
/*0x410*/ struct _UNICODE_STRING RedirectionDllName; // 3 elements, 0x10 bytes (sizeof)
/*0x420*/ struct _UNICODE_STRING HeapPartitionName; // 3 elements, 0x10 bytes (sizeof)
/*0x430*/ UINT64* DefaultThreadpoolCpuSetMasks;
/*0x438*/ ULONG32 DefaultThreadpoolCpuSetMaskCount;
/*0x43C*/ UINT8 _PADDING2_[0x4];
}RTL_USER_PROCESS_PARAMETERS, *PRTL_USER_PROCESS_PARAMETERS; typedef struct _PEB_LDR_DATA // 9 elements, 0x58 bytes (sizeof)
{
/*0x000*/ ULONG32 Length;
/*0x004*/ UINT8 Initialized;
/*0x005*/ UINT8 _PADDING0_[0x3];
/*0x008*/ VOID* SsHandle;
/*0x010*/ struct _LIST_ENTRY InLoadOrderModuleList; // 2 elements, 0x10 bytes (sizeof)
/*0x020*/ struct _LIST_ENTRY InMemoryOrderModuleList; // 2 elements, 0x10 bytes (sizeof)
/*0x030*/ struct _LIST_ENTRY InInitializationOrderModuleList; // 2 elements, 0x10 bytes (sizeof)
/*0x040*/ VOID* EntryInProgress;
/*0x048*/ UINT8 ShutdownInProgress;
/*0x049*/ UINT8 _PADDING1_[0x7];
/*0x050*/ VOID* ShutdownThreadId;
}PEB_LDR_DATA, *PPEB_LDR_DATA; typedef struct _PEB64
{
UCHAR InheritedAddressSpace;
UCHAR ReadImageFileExecOptions;
UCHAR BeingDebugged;
UCHAR BitField;
ULONG64 Mutant;
ULONG64 ImageBaseAddress;
PPEB_LDR_DATA Ldr;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
ULONG64 SubSystemData;
ULONG64 ProcessHeap;
ULONG64 FastPebLock;
ULONG64 AtlThunkSListPtr;
ULONG64 IFEOKey;
ULONG64 CrossProcessFlags;
ULONG64 UserSharedInfoPtr;
ULONG SystemReserved;
ULONG AtlThunkSListPtr32;
ULONG64 ApiSetMap;
} PEB64, *PPEB64; #pragma pack(4)
typedef struct _PEB32
{
UCHAR InheritedAddressSpace;
UCHAR ReadImageFileExecOptions;
UCHAR BeingDebugged;
UCHAR BitField;
ULONG Mutant;
ULONG ImageBaseAddress;
ULONG Ldr;
ULONG ProcessParameters;
ULONG SubSystemData;
ULONG ProcessHeap;
ULONG FastPebLock;
ULONG AtlThunkSListPtr;
ULONG IFEOKey;
ULONG CrossProcessFlags;
ULONG UserSharedInfoPtr;
ULONG SystemReserved;
ULONG AtlThunkSListPtr32;
ULONG ApiSetMap;
} PEB32, *PPEB32; typedef struct _PEB_LDR_DATA32
{
ULONG Length;
BOOLEAN Initialized;
ULONG SsHandle;
LIST_ENTRY32 InLoadOrderModuleList;
LIST_ENTRY32 InMemoryOrderModuleList;
LIST_ENTRY32 InInitializationOrderModuleList;
ULONG EntryInProgress;
} PEB_LDR_DATA32, *PPEB_LDR_DATA32; typedef struct _LDR_DATA_TABLE_ENTRY32
{
LIST_ENTRY32 InLoadOrderLinks;
LIST_ENTRY32 InMemoryOrderModuleList;
LIST_ENTRY32 InInitializationOrderModuleList;
ULONG DllBase;
ULONG EntryPoint;
ULONG SizeOfImage;
UNICODE_STRING32 FullDllName;
UNICODE_STRING32 BaseDllName;
ULONG Flags;
USHORT LoadCount;
USHORT TlsIndex;
union
{
LIST_ENTRY32 HashLinks;
ULONG SectionPointer;
}u1;
ULONG CheckSum;
union
{
ULONG TimeDateStamp;
ULONG LoadedImports;
}u2;
ULONG EntryPointActivationContext;
ULONG PatchInformation;
} LDR_DATA_TABLE_ENTRY32, *PLDR_DATA_TABLE_ENTRY32; #pragma pack()

接着就来实现对PEB的获取操作,以64位为例,我们需要调用PsGetProcessPeb()这个内核函数,因为该内核函数没有被公开所以调用之前需要头部导出,该函数需要传入用户进程的EProcess结构,该结构可用PsLookupProcessByProcessId函数动态获取到,获取到以后直接KeStackAttachProcess()附加到应用层进程上,即可直接输出进程的PEB结构信息,如下代码。

#include "peb.h"
#include <ntifs.h> // 定义导出
NTKERNELAPI PVOID NTAPI PsGetProcessPeb(_In_ PEPROCESS Process); VOID UnDriver(PDRIVER_OBJECT driver)
{
DbgPrint(("Uninstall Driver Is OK \n"));
}
// LyShark
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
DbgPrint("hello lyshark \n"); NTSTATUS status = STATUS_UNSUCCESSFUL;
PEPROCESS eproc = NULL;
KAPC_STATE kpc = { 0 }; PPEB64 pPeb64 = NULL; __try
{
// HANDLE)4656 进程PID
status = PsLookupProcessByProcessId((HANDLE)4656, &eproc); // 得到64位PEB
pPeb64 = (PPEB64)PsGetProcessPeb(eproc); DbgPrint("PEB64 = %p \n", pPeb64); if (pPeb64 != 0)
{
// 验证可读性
ProbeForRead(pPeb64, sizeof(PEB32), 1); // 附加进程
KeStackAttachProcess(eproc, &kpc); DbgPrint("进程基地址: 0x%p \n", pPeb64->ImageBaseAddress);
DbgPrint("ProcessHeap = 0x%p \n", pPeb64->ProcessHeap);
DbgPrint("BeingDebugged = %d \n", pPeb64->BeingDebugged); // 脱离进程
KeUnstackDetachProcess(&kpc);
}
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
Driver->DriverUnload = UnDriver;
return STATUS_SUCCESS;
} Driver->DriverUnload = UnDriver;
return STATUS_SUCCESS;
}

PEB64代码运行后,我们加载驱动即可看到如下结果:

而相对于64位进程来说,获取32位进程的PEB信息可以直接调用PsGetProcessWow64Process()函数得到,该函数已被导出可以任意使用,获取PEB代码如下。

#include "peb.h"
#include <ntifs.h> // 定义导出
NTKERNELAPI PVOID NTAPI PsGetProcessPeb(_In_ PEPROCESS Process); VOID UnDriver(PDRIVER_OBJECT driver)
{
DbgPrint(("Uninstall Driver Is OK \n"));
} // LyShark
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
DbgPrint("hello lyshark \n"); NTSTATUS status = STATUS_UNSUCCESSFUL;
PEPROCESS eproc = NULL;
KAPC_STATE kpc = { 0 }; PPEB32 pPeb32 = NULL; __try
{
// HANDLE)4656 进程PID
status = PsLookupProcessByProcessId((HANDLE)6164, &eproc); // 得到32位PEB
pPeb32 = (PPEB32)PsGetProcessWow64Process(eproc); DbgPrint("PEB32 = %p \n", pPeb32); if (pPeb32 != 0)
{
// 验证可读性
ProbeForRead(pPeb32, sizeof(PEB32), 1); // 附加进程
KeStackAttachProcess(eproc, &kpc); DbgPrint("进程基地址: 0x%p \n", pPeb32->ImageBaseAddress);
DbgPrint("ProcessHeap = 0x%p \n", pPeb32->ProcessHeap);
DbgPrint("BeingDebugged = %d \n", pPeb32->BeingDebugged); // 脱离进程
KeUnstackDetachProcess(&kpc);
} }
__except (EXCEPTION_EXECUTE_HANDLER)
{
Driver->DriverUnload = UnDriver;
return STATUS_SUCCESS;
} Driver->DriverUnload = UnDriver;
return STATUS_SUCCESS;
}

PEB32代码运行后,我们加载驱动即可看到如下结果:

5.4 Windows驱动开发:内核通过PEB取进程参数的更多相关文章

  1. Windows驱动开发-内核常用内存函数

    搞内存常用函数 C语言 内核 malloc ExAllocatePool memset RtlFillMemory memcpy RtlMoveMemory free ExFreePool

  2. Windows驱动开发(中间层)

    Windows驱动开发 一.前言 依据<Windows内核安全与驱动开发>及MSDN等网络质料进行学习开发. 二.初步环境 1.下载安装WDK7.1.0(WinDDK\7600.16385 ...

  3. [Windows驱动开发](一)序言

    笔者学习驱动编程是从两本书入门的.它们分别是<寒江独钓——内核安全编程>和<Windows驱动开发技术详解>.两本书分别从不同的角度介绍了驱动程序的制作方法. 在我理解,驱动程 ...

  4. windows驱动开发推荐书籍

    [作者] 猪头三 个人网站 :http://www.x86asm.com/ [序言] 很多人都对驱动开发有兴趣,但往往找不到正确的学习方式.当然这跟驱动开发的本土化资料少有关系.大多学的驱动开发资料都 ...

  5. windows 驱动开发入门——驱动中的数据结构

    最近在学习驱动编程方面的内容,在这将自己的一些心得分享出来,供大家参考,与大家共同进步,本人学习驱动主要是通过两本书--<独钓寒江 windows安全编程> 和 <windows驱动 ...

  6. Windows驱动——读书笔记《Windows驱动开发技术详解》

    =================================版权声明================================= 版权声明:原创文章 谢绝转载  请通过右侧公告中的“联系邮 ...

  7. Windows驱动开发-IRP的完成例程

    <Windows驱动开发技术详解 >331页, 在将IRP发送给底层驱动或其他驱动之前,可以对IRP设置一个完成例程,一旦底层驱动将IRP完成后,IRP完成例程立刻被处罚,通过设置完成例程 ...

  8. C++第三十八篇 -- 研究一下Windows驱动开发(二)--WDM式驱动的加载

    基于Windows驱动开发技术详解这本书 一.简单的INF文件剖析 INF文件是一个文本文件,由若干个节(Section)组成.每个节的名称用一个方括号指示,紧接着方括号后面的就是节内容.每一行就是一 ...

  9. C++第三十三篇 -- 研究一下Windows驱动开发(一)内部构造介绍

    因为工作原因,需要做一些与网卡有关的测试,其中涉及到了驱动这一块的知识,虽然程序可以运行,但是不搞清楚,心里总是不安,觉得没理解清楚.因此想看一下驱动开发.查了很多资料,看到有人推荐Windows驱动 ...

  10. Windows 驱动开发 - 5

    上篇<Windows 驱动开发 - 4>我们已经完毕了硬件准备. 可是我们还没有详细的数据操作,比如接收读写操作. 在WDF中进行此类操作前须要进行设备的IO控制,已保持数据的完整性. 我 ...

随机推荐

  1. Grafana--Min step与Resolution

    问题: 今天在统计机房请求量的时候,发现时间选择12 hours时还是正常的,但是选择24 hours时就有一些线条出不来,数据也有缺失,如下: 12 hours 24 hours 问了同事,说是数据 ...

  2. FOR ALL ENTRIES IN 与 INNER JOIN 内表

    1.区别 FOR ALL ENTRIES IN 与 INNER JOIN 内表,目的都是通过内表找数据库表与之对应的数据,但是有区别. 1.1.写法 FOR ALL ENTRIES IN " ...

  3. MB51增强

    一.在MB51报表中新增列 包含文件RM07DOCS_GENERATED的itab结构中,新增字段 在RM07DOCS中的detail_list子例程中添加查询逻辑 在子例程build_fieldca ...

  4. SpringBoot 学习笔记:运维篇

    SpringBoot程序的打包和运行 开发部门使用Git.SVN等版本控制工具上传工程到版本服务器 服务器使用版本控制工具下载工程 服务器上使用Maven工具在当前真机环境下重新构建项目 启动服务 程 ...

  5. 以太网扫盲(一)各种网络总线 mii总线,mdio总线介绍

    本文主要介绍以太网的MAC(Media Access Control,即媒体访问控制子层协议)和PHY(物理层)之间的MII(Media Independent Interface ,媒体独立接口), ...

  6. Liunx运维(一)-命令行

    一.命令行的开启与推出 1.exit 2.logout 3.ctrl+d   二.命令行提示符 1.#root用户 2.$普通用户 3.~当前用户所在的路径 4.全局配置文件: /etc/profil ...

  7. go 变量逃逸分析

    0. 前言 在 小白学标准库之 reflect 篇中介绍了反射的三大法则以及变量的逃逸分析.对于逃逸分析的介绍不多,大部分都是引自 Go 逃逸分析.不过后来看反射源码的过程中发现有一种情况 Go 逃逸 ...

  8. ElasticSearch使用实践(文档操作)

    可以使用Docker安装ES和Kibana: 使用docker-compose安装ElasticSearch和Kibana: version: '3.1' services: elasticsearc ...

  9. spring-transaction源码分析(1)概述和事务传播级别

    spring-tx概述 spring-tx包使用注解驱动和AOP通知将事务开启.提交/回滚.以及复杂的传播机制封装了起来,开发者不再需要编写事务管理的代码,而是可以只关注自己的业务逻辑. 本文将简单介 ...

  10. 如何让Dec-C++支持C++11

    1.问题 Dev-C++默认设置中是不支持C++11版本特性的,如Lambda表达式,nullptr等均不提供支持 2.解决 设置编译选项 编译时加上命令-std==c++11即可