P2312 解方程

bzoj3751(数据加强)

暴力的一题

数据范围:$\left | a_{i} \right |<=10^{10000}$。连高精都无法解决。

然鹅面对这种题,有一种常规套路:取模

显然方程两边同时$mod$结果不会改变

于是我们牺牲了正确性使答案允许我们暴力枚举。

为了提高正确性我们可以$mod$多个较小质数进行判断

至于代入解方程,用秦九韶算法

(bzoj数据真的强,压线过的)

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cctype>
#define re register
using namespace std;
char gc(){
static char buf[],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2)?EOF:*p1++;
}
const int mod[]={,,,,,};//从bzoj讨论版拿的一组(%%%mcfx)
int n,m,ans,c[],tp,a[][];
void read(int i){
char c=gc();bool f=;
for(int j=;j<;++j) a[j][i]=;
while(!isdigit(c)) f=(f&&c!='-'),c=gc();
while(isdigit(c)){
for(int j=;j<;++j)
a[j][i]=((a[j][i]<<)+(a[j][i]<<)+(c^))%mod[j];
c=gc();
}
if(!f) for(int j=;j<;++j) a[j][i]=-a[j][i];
}
void write(int x){
if(x<) putchar('-'),x=-x;
if(x>) write(x/);
putchar(x%|);
}
int F(int *p,int x,int mod){
int res=;
for(re int i=n;i>=;--i) res=1ll*(1ll*res*x+p[i])%mod;
return !res;
}//秦九韶算法解方程
int main(){
scanf("%d%d",&n,&m);
for(re int i=;i<=n;++i) read(i); for(re int j=;j<;++j){
for(re int i=;i<mod[j];++i)
if(F(a[j],i,mod[j]))
for(re int u=i;u<=m;u+=mod[j]) ++c[u];
}
for(re int i=;i<=m;++i)
if(c[i]==)
++ans,c[++tp]=i;
write(ans),putchar('\n');
for(re int i=;i<=tp;++i) write(c[i]),putchar('\n');
return ;
}

bzoj3751 / P2312 解方程的更多相关文章

  1. codevs3732==洛谷 解方程P2312 解方程

    P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 已知多项式方程: a ...

  2. 洛谷 P2312 解方程 解题报告

    P2312 解方程 题目描述 已知多项式方程: \(a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\)求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整 ...

  3. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  4. 洛谷 P2312 解方程 题解

    P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...

  5. [noip2014]P2312 解方程

    P2312 解方程 其实这道题就是求一个1元n次方程在区间[1, m]上的整数解. 我们枚举[1, m]上的所有整数,带进多项式中看看结果是不是0即可. 这里有一个技巧就是秦九韶算法,请读者自行查看学 ...

  6. P2312 解方程(随机化)

    P2312 解方程 随机化的通俗解释:当无法得出100%正确的答案时,考虑随机化一波,于是这份代码很大可能会对(几乎不可能出错). 比如这题:把系数都模一个大质数(也可以随机一个质数),然后O(m)跑 ...

  7. [BZOJ3751][NOIP2014] 解方程

    Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个 ...

  8. [NOIP2014] 提高组 洛谷P2312 解方程

    题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...

  9. [BZOJ3751] [NOIP2014] 解方程 (数学)

    Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...

随机推荐

  1. Spring事务核心接口

  2. eclipse启动错误

    1.错误日志 !SESSION 2013-12-09 12:24:33.826 -----------------------------------------------eclipse.build ...

  3. JS 获取中英字符串字节长度

    正则匹配中文字: 这里限定中文字的范围,一般的使用是没什么问题的.如果要求十分严格的话,那么就只能使用更加严谨的代码匹配了 1:/([^\u0000-\u00FF])/g 2:/[^\x00-\xff ...

  4. Linux进程数据结构详解

    1.Linux的进程简介: 支持多线程的操作系统中,进程是资源分配的最小单位,线程是调度的基本单位.Linux是现代的32位或64位的支持多线程的操作系统,不过Linux是一种以轻量级进程作为线程,多 ...

  5. 【BZOJ2554】Color 概率神题

    [BZOJ2554]Color Description 有n个球排成一列,每个球都有一个颜色,用A-Z的大写字母来表示,我们每次随机选出两个球ball1,ball2,使得后者染上前者的颜色,求期望操作 ...

  6. 【Android】安卓中常用的图片加载方法

    一.通过相机选图片: 布局文件: <?xml version="1.0" encoding="utf-8"?> <LinearLayout x ...

  7. SMGP3.0协议的概念知识

    该项目主页在https://code.google.com/archive/p/smgp/,可以使用VPN进去看看,该项目是开源的,根据SMGP3.0协议写的API,我们要用的话直接调用就好了,这里主 ...

  8. Thinkphp自定义工具类的使用!

    在使用Thinkphp做开发的时候,很多时候会用到一些自己写的类,为了方便管理,可以把这些类,单独放到一个文件里. 这就是自定义工具类: 首先在 Application 目录下新建 Component ...

  9. Oracle命令(三):Oracle用户

    1.显示当前用户名 select user from dual; show user 2.显示当然用户有哪些表 select * from tab; 3.显示当所有用户的表 select * from ...

  10. 清空messages方法

    1.du -sh /var/log/messages 2.losf /var/log/messages 3.cat /dev/null > /var/log/messages 4.du -sh ...