洛谷 P2015 二叉苹果树 (树上背包)

一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包。

首先,定义状态\(dp[x][i]\)表示在节点\(x\)保留\(i\)个边所获得的最大苹果数,定义状态时一定要选对状态并且定义清晰(状态中包括了当前节点吗?目标状态是怎样的?)。一开始我就是因为状态定义错误,所以卡了半天,之后重新定义状态后几分钟就切了这道题。

然后是普通的树上背包状态转移

\[dp[x][i]=max(dp[x][i], dp[x][i-k]+dp[son_x][k-1]+val)
\]

注意,此次已优化了一维,所以\(i\)要降序遍历。

AC Code:

#include <cstdio>
#include <vector>
#define MAXN 110
#define MAX(A,B) ((A)>(B)?(A):(B))
#define MIN(A,B) ((A)<(B)?(A):(B))
using namespace std;
int n,q,dp[MAXN][MAXN];
struct nod{
int v, val;
nod(int v, int val):v(v),val(val){}
};
vector <nod> mp[MAXN];
int dfs(int x, int fa){
int cnt=1,sz=0;
for(register int i=0;i<mp[x].size();++i){
int v=mp[x][i].v,val=mp[x][i].val;
if(fa==v) continue;
sz=dfs(v, x);
cnt+=sz;
for(register int j=q;j>=0;--j)
for(register int k=1;k<=MIN(sz, j);++k)
dp[x][j]=MAX(dp[x][j], dp[v][k-1]+dp[x][j-k]+val);
}
return cnt;
}
int main()
{
scanf("%d %d", &n, &q);n--;
while(n--){
int a,b,val;
scanf("%d %d %d", &a, &b, &val);
mp[a].push_back(nod(b, val));
mp[b].push_back(nod(a, val));
}
dfs(1,0);
printf("%d", dp[1][q]);
return 0;
}
/*
dp[x][i]=MAX(dp[x][i], dp[x][i-k]+dp[son_x][k-1]+val)
*/

洛谷 P2015 二叉苹果树 (树上背包)的更多相关文章

  1. 洛谷p2015二叉苹果树&yzoj1856多叉苹果树题解

    二叉 多叉 有一棵苹果树,如果树枝有分叉,可以是分多叉,分叉数k>=0(就是说儿子的结点数大于等于0)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1~N,树根编号一定是1.我们用一根树枝两 ...

  2. 洛谷 P2015 二叉苹果树 && caioj1107 树形动态规划(TreeDP)2:二叉苹果树

    这道题一开始是按照caioj上面的方法写的 (1)存储二叉树用结构体,记录左儿子和右儿子 (2)把边上的权值转化到点上,离根远的点上 (3)用记忆化搜索,枚举左右节点分别有多少个点,去递归 这种写法有 ...

  3. 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门

    dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...

  4. 洛谷 P2015 二叉苹果树 题解

    题面 裸的树上背包: 设f[u][i]表示在以u为子树的树种选择i条边的最大值,则:f[u][i]=max(f[u][i],f[u][i-j-1]+f[v][k]+u到v的边权); #include ...

  5. 洛谷 P2015 二叉苹果树

    老规矩,先放题面 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端 ...

  6. 洛谷P2015 二叉苹果树

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  7. 洛谷—— P2015 二叉苹果树

    https://www.luogu.org/problem/show?pid=2015 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点 ...

  8. 洛谷P2015 二叉苹果树(树状dp)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  9. 洛谷P2015二叉苹果树

    传送门啦 树形 $ dp $ 入门题,学树形 $ dp $ 的话,可以考虑先做这个题. $ f[i][j] $ 表示在 $ i $ 这棵子树中选 $ j $ 个苹果的最大价值. include #in ...

随机推荐

  1. 生产消费者队列(TaskCompletionSource)的应用

    using System; using System.Collections.Concurrent; using System.Collections.Generic; using System.Li ...

  2. git和码云的使用

    什么是码云 快速入门 Git入门 码云是开源中国社区2013年推出的基于 Git 的完全免费的代码托管服务,这个服务是基于 Gitlab 开源软件所开发的,我们在 Gitlab 的基础上做了大量的改进 ...

  3. java.lang.NoClassDefFoundError: com/mchange/v2/ser/Indirector解决方法

    java.lang.NoClassDefFoundError: com/mchange/v2/ser/Indirector解决方法 错误描述:java.lang.NoClassDefFoundErro ...

  4. shell 用环境变量的值修改properties文件

    假设有如下属性文件 demo.properties user.name=test user.password=123456 ............................... 需求:先需要 ...

  5. Mybatis的select查询的三种方式

    1.首先建立一个测试的dao public interface IStudentDao { // 根据姓名查询 List<Student> selectStudentsByName(Str ...

  6. UVa 11419 SAM I AM (最小覆盖数)

    题意:给定一个 n * m 的矩阵,有一些格子有目标,每次可以消灭一行或者一列,问你最少要几次才能完成. 析:把 行看成 X,把列看成是 Y,每个目标都连一条线,那么就是一个二分图的最小覆盖数,这个答 ...

  7. webapi Model Validation 模型验证

    通常情况下,对于那些经常为别人提供数据接口的开发人员来说,对于调用方传递过来的参数都会有验证处理.例如: if (string.IsNullOrEmpty(entity.Name)) { //当姓名为 ...

  8. Android-Sqlite-OOP方式操作增删改查

    之前写的数据库增删改查,是使用SQL语句来实现的,Google 就为Android开发人员考虑,就算不会SQL语句也能实现增删改查,所以就有了OOP面向对象的增删改查方式 其实这种OOP面向对象的增删 ...

  9. AndroidStudio-Unable to save settings Failed to save settings. Please restart Android Studio

    Unable to save settings Failed to save settings. Please restart Android Studio 解决方法: 删除工程的.idea 然后在 ...

  10. 开通博客暨注册github事件

    (1) 姓      名:丁新宇 学      号:1413042054 班      级:网工142 兴趣爱好:听歌.看书.编代码. (2) GitHub注册流程: 1,百度搜索GitHub,进入官 ...