In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1] f[1] c[2] f[2] ... c[N] f[N]

where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (≤), then followed by M student submissions. Each student submission consists of N lines, each in the format:

c[i] code[i]

where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0's and '1's.

Output Specification:

For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.

Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

Sample Input:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11

Sample Output:

Yes
Yes
No
No
#include<iostream>
#include<cstring>
using namespace std;
const int maxn = ; int n,m;
int wgh;
int cnt1,cnt2;
int w[maxn];
char ch[maxn];
int codelen; typedef struct TreeNode* Tree;
struct TreeNode{
int weight;
Tree Left,Right;
};
typedef struct HeapNode* Heap;
struct HeapNode{
TreeNode Data[maxn];
int size;
}; Tree creatTree();
Heap creatHeap();
void Insert(Heap H,TreeNode T);
Tree Delete(Heap H);
Tree Huffman(Heap H);
int WPL(Tree T,int depth);
void JudgeTree(Tree T);
bool Judge(); int main(){
cin >> n; Tree T = creatTree();
Heap H = creatHeap(); for(int i = ; i < n; i++){
getchar();
cin >> ch[i] >> w[i];
H->Data[H->size].Left = H->Data[H->size].Right = NULL;
T->weight = w[i];
Insert(H,*T);
} T = Huffman(H); codelen = WPL(T,);
cin >> m;
while(m--){
if(Judge()) printf("Yes\n");
else printf("No\n");
} return ;
} Tree creatTree(){
Tree T = new TreeNode;
T->weight = ;
T->Left = T->Right = NULL;
return T;
} Heap creatHeap(){
Heap H = new HeapNode;
H->Data[].weight = -;
H->size = ;
return H;
} void Insert(Heap H,TreeNode T){
int i = ++H->size;
for(;T.weight < H->Data[i/].weight; i /= )
H->Data[i] = H->Data[i/];
H->Data[i] = T;
} Tree Huffman(Heap H){
Tree T = creatTree();
while(H->size != ){
T->Left = Delete(H);
T->Right = Delete(H);
T->weight = T->Left->weight + T->Right->weight;
Insert(H,*T);
}
T = Delete(H);
return T;
} Tree Delete(Heap H){
int child,parent;
TreeNode temp = H->Data[H->size--];
Tree T = creatTree();
*T = H->Data[];
for(parent = ; * parent <= H->size; parent = child){
child = parent * ;
if(child < H->size && H->Data[child+].weight < H->Data[child].weight)
child++;
if(H->Data[child].weight > temp.weight) break;
H->Data[parent] = H->Data[child];
}
H->Data[parent] = temp;
return T;
} int WPL(Tree T,int depth){
if(!T->Left && ! T->Right) return (depth*T->weight);
else return WPL(T->Left,depth+) + WPL(T->Right,depth+);
} bool Judge(){
char s1[maxn],s2[maxn];
bool flag = true;
Tree T = creatTree();
Tree pt = NULL;
for(int i = ; i < n; i++){
cin >> s1 >> s2;
if(strlen(s2) > n) return ;
int j;
for(j = ; s1[] != ch[j];j++);
wgh = w[j];
pt = T;
for(j = ; s2[j]; j++){
if(s2[j] == ''){
if(!pt->Left) pt->Left = creatTree();
pt = pt->Left;
}
if(s2[j] == ''){
if(!pt->Right) pt->Right = creatTree();
pt = pt->Right;
}
if(pt->weight) flag = false;
if(!s2[j+]){
if(pt->Left || pt->Right) flag = false;
else pt->weight = wgh;
}
}
}
if(!flag) return ;
cnt1 = cnt2 = ;
JudgeTree(T);
if(cnt1 != cnt2 + ) return ;
if(codelen == WPL(T,)) return ;
else return ;
} void JudgeTree(Tree T){
if(T){
if(T->Right&&T->Left) cnt2++;
else if(!T->Right && !T->Left) cnt1++;
else cnt1 = ;
JudgeTree(T->Left);
JudgeTree(T->Right);
}
}

05-树9 Huffman Codes (30 分)的更多相关文章

  1. pta5-9 Huffman Codes (30分)

    5-9 Huffman Codes   (30分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  2. PTA 05-树9 Huffman Codes (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/671 5-9 Huffman Codes   (30分) In 1953, David ...

  3. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  4. pat树之专题(30分)

    (好好复习是王道) 1115. Counting Nodes in a BST (30) 分析:简单题——将bst树构造出来,然后给每个节点打上高度.最后求出树的高度.然后count树高的节点数加上树 ...

  5. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  6. 05-树9 Huffman Codes(30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  7. PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****

    1057 Stack (30 分)   Stack is one of the most fundamental data structures, which is based on the prin ...

  8. Huffman codes

    05-树9 Huffman Codes(30 分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  9. PAT 甲级 1053 Path of Equal Weight (30 分)(dfs,vector内元素排序,有一小坑点)

    1053 Path of Equal Weight (30 分)   Given a non-empty tree with root R, and with weight W​i​​ assigne ...

随机推荐

  1. android listView布局等分列

    android listView布局4等分列. 必须要加上<RelativeLayout 在外层,不然等分不起作用 <RelativeLayout xmlns:android=" ...

  2. Javascript 知识遗漏点梳理。

    先说一下我之前学习Javascript的学习经历,然后就是最近几天学到以前没有注意的知识遗漏点. 1.之前的学习经历和方法: 最开始是看了Javascript DOM编程与艺术这本书,把慕课网上的&l ...

  3. (并查集 带关系)Find them, Catch them -- poj -- 1703

    链接: http://poj.org/problem?id=1703 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3676 ...

  4. Spring全局异常处理

    最近学习Spring时,认识到Spring异常处理的强大.之前处理工程异常,代码中最常见的就是try-catch-finally,有时一个try,多个catch,覆盖了核心业务逻辑: 1 try{ 2 ...

  5. Oracle Inventory Management Application Program Interface ( APIs) (Doc ID 729998.1)

    In this Document Goal Solution References APPLIES TO: Oracle Inventory Management - Version 12.0.0 a ...

  6. Python学习-7.Python的循环语句-for语句

    Python中循环可以使用for语句来实现 list = ['Tom','Lucy','Mary'] for name in list: print(name) 则将会依次输出Tom Lucy Mar ...

  7. Elasticsearch 安装的时候,Unsupported major.minor version 51.0问题的解决

    Elasticsearch安装的时候报错 bootstrap/Elasticsearch : Unsupported major.minor version 51.0 网上一般说的方法是,升级或者降级 ...

  8. day15(生成器send方法,递归,匿名函数,内置函数)

    一,复习 ''' 1.带参装饰器 - 自定义 | wraps def wrap(info) def outer1(func): from functools import wraps @wraps(f ...

  9. solrcloud 搭建资料

    SolrCloud4.9+zookeeper在CentOS上的搭建与安装 http://www.open-open.com/lib/view/open1411307048750.html 官网教程 h ...

  10. ASP.NET MVC5实现伪静态

    目录 1.什么是伪静态?为什么要实现伪静态? 2.实现APS.NET MVC伪静态的方式有哪些? 3.那么如何实现使用ASP.NET MVC5的伪静态呢? (1)在路由注册中启用特性路由 (2)为需要 ...