In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1] f[1] c[2] f[2] ... c[N] f[N]

where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (≤), then followed by M student submissions. Each student submission consists of N lines, each in the format:

c[i] code[i]

where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0's and '1's.

Output Specification:

For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.

Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

Sample Input:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11

Sample Output:

Yes
Yes
No
No
#include<iostream>
#include<cstring>
using namespace std;
const int maxn = ; int n,m;
int wgh;
int cnt1,cnt2;
int w[maxn];
char ch[maxn];
int codelen; typedef struct TreeNode* Tree;
struct TreeNode{
int weight;
Tree Left,Right;
};
typedef struct HeapNode* Heap;
struct HeapNode{
TreeNode Data[maxn];
int size;
}; Tree creatTree();
Heap creatHeap();
void Insert(Heap H,TreeNode T);
Tree Delete(Heap H);
Tree Huffman(Heap H);
int WPL(Tree T,int depth);
void JudgeTree(Tree T);
bool Judge(); int main(){
cin >> n; Tree T = creatTree();
Heap H = creatHeap(); for(int i = ; i < n; i++){
getchar();
cin >> ch[i] >> w[i];
H->Data[H->size].Left = H->Data[H->size].Right = NULL;
T->weight = w[i];
Insert(H,*T);
} T = Huffman(H); codelen = WPL(T,);
cin >> m;
while(m--){
if(Judge()) printf("Yes\n");
else printf("No\n");
} return ;
} Tree creatTree(){
Tree T = new TreeNode;
T->weight = ;
T->Left = T->Right = NULL;
return T;
} Heap creatHeap(){
Heap H = new HeapNode;
H->Data[].weight = -;
H->size = ;
return H;
} void Insert(Heap H,TreeNode T){
int i = ++H->size;
for(;T.weight < H->Data[i/].weight; i /= )
H->Data[i] = H->Data[i/];
H->Data[i] = T;
} Tree Huffman(Heap H){
Tree T = creatTree();
while(H->size != ){
T->Left = Delete(H);
T->Right = Delete(H);
T->weight = T->Left->weight + T->Right->weight;
Insert(H,*T);
}
T = Delete(H);
return T;
} Tree Delete(Heap H){
int child,parent;
TreeNode temp = H->Data[H->size--];
Tree T = creatTree();
*T = H->Data[];
for(parent = ; * parent <= H->size; parent = child){
child = parent * ;
if(child < H->size && H->Data[child+].weight < H->Data[child].weight)
child++;
if(H->Data[child].weight > temp.weight) break;
H->Data[parent] = H->Data[child];
}
H->Data[parent] = temp;
return T;
} int WPL(Tree T,int depth){
if(!T->Left && ! T->Right) return (depth*T->weight);
else return WPL(T->Left,depth+) + WPL(T->Right,depth+);
} bool Judge(){
char s1[maxn],s2[maxn];
bool flag = true;
Tree T = creatTree();
Tree pt = NULL;
for(int i = ; i < n; i++){
cin >> s1 >> s2;
if(strlen(s2) > n) return ;
int j;
for(j = ; s1[] != ch[j];j++);
wgh = w[j];
pt = T;
for(j = ; s2[j]; j++){
if(s2[j] == ''){
if(!pt->Left) pt->Left = creatTree();
pt = pt->Left;
}
if(s2[j] == ''){
if(!pt->Right) pt->Right = creatTree();
pt = pt->Right;
}
if(pt->weight) flag = false;
if(!s2[j+]){
if(pt->Left || pt->Right) flag = false;
else pt->weight = wgh;
}
}
}
if(!flag) return ;
cnt1 = cnt2 = ;
JudgeTree(T);
if(cnt1 != cnt2 + ) return ;
if(codelen == WPL(T,)) return ;
else return ;
} void JudgeTree(Tree T){
if(T){
if(T->Right&&T->Left) cnt2++;
else if(!T->Right && !T->Left) cnt1++;
else cnt1 = ;
JudgeTree(T->Left);
JudgeTree(T->Right);
}
}

05-树9 Huffman Codes (30 分)的更多相关文章

  1. pta5-9 Huffman Codes (30分)

    5-9 Huffman Codes   (30分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  2. PTA 05-树9 Huffman Codes (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/671 5-9 Huffman Codes   (30分) In 1953, David ...

  3. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  4. pat树之专题(30分)

    (好好复习是王道) 1115. Counting Nodes in a BST (30) 分析:简单题——将bst树构造出来,然后给每个节点打上高度.最后求出树的高度.然后count树高的节点数加上树 ...

  5. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  6. 05-树9 Huffman Codes(30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  7. PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****

    1057 Stack (30 分)   Stack is one of the most fundamental data structures, which is based on the prin ...

  8. Huffman codes

    05-树9 Huffman Codes(30 分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  9. PAT 甲级 1053 Path of Equal Weight (30 分)(dfs,vector内元素排序,有一小坑点)

    1053 Path of Equal Weight (30 分)   Given a non-empty tree with root R, and with weight W​i​​ assigne ...

随机推荐

  1. 这样的UX设计师简历,HR分分钟给你来电话

    BLS调查显示,软件开发和IT,用户体验设计,产品经理和项目管理这三个职位在未来有非凡的发展前景.其中,用户体验设计师是目前最有需求的创意产业工作之一.10年里就业增长率高达22.1%,工作岗位数3, ...

  2. 从iOS 11看怎样设计APP图标

    苹果WWDC2017开发者大会已经尘埃落定,除了新产品的发布,iOS 11也正式亮相.新系统中,地图.App Store.时钟.相机.联系人等等原生应用都换了新的图标.此次图标的变化势必也会激发下一个 ...

  3. JMS规范简介

    一.JMS规范 Java消息服务定义: Java消息服务(Java Message Service)即JMS,是一个Java平台中面向消息中间件的API,用于在两个应用程序之间或分布式系统中发送/接受 ...

  4. 微信小程序 tp5上传图片

    test.wxml页面 <view class="title">请选择要反馈的问题</view> <view> <picker bindc ...

  5. 23 DesignPatterns学习笔记:C++语言实现 --- 1.2 AbstractFactory

    23 DesignPatterns学习笔记:C++语言实现 --- 1.2 AbstractFactory 2016-07-21 (www.cnblogs.com/icmzn) 模式理解  

  6. 用 pyqt4 编写的一个翻译小工具

    有时候我们在开发时遇到一些陌生的英文单词或者不容易看出某些长句的中文意思时该怎么办呢?打开桌面上的翻译软件?打开浏览器里收藏着的翻译网址或者直接贴上百度的搜索框去查?这些方法固然可以,还很常见,但如果 ...

  7. android多lib库工程的自动批量构建--准备

    打包这个活儿吧,本来没什么技术含量,千篇一律的更改渠道名称,然后编译,签名即可.但是如果发布渠道比较多的话,这种重复工作让人烦不胜烦.我们的应用发布渠道有30多个,若是手工打包,基本不用做其他的事情了 ...

  8. solr特点七:Plugins(扩展点)

    http://wiki.apache.org/solr/SolrPlugins 在 Solr 1.3 中,扩展 Solr 以及配置和重新整理扩展变得十分简单.以前,您需要编写一个 SolrReques ...

  9. SQL datediff()函数 时间差

    定义和用法 DATEDIFF() 函数返回两个日期之间的天数. 语法 DATEDIFF(datepart,startdate,enddate) startdate 和 enddate 参数是合法的日期 ...

  10. 【MVC】视图页引用分部视图(WebForm叫做用户控件)

    方法一.不经过控制器.动作方法,直接返回Html @Html.Partial("Head","我可以给分布视图传数据") Head是Views/Shared/H ...