05-树9 Huffman Codes (30 分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.
Input Specification:
Each input file contains one test case. For each case, the first line gives an integer N (2), then followed by a line that contains all the N distinct characters and their frequencies in the following format:
c[1] f[1] c[2] f[2] ... c[N] f[N]
where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (≤), then followed by M student submissions. Each student submission consists of N lines, each in the format:
c[i] code[i]
where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0's and '1's.
Output Specification:
For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.
Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.
Sample Input:
7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11
Sample Output:
Yes
Yes
No
No
#include<iostream>
#include<cstring>
using namespace std;
const int maxn = ; int n,m;
int wgh;
int cnt1,cnt2;
int w[maxn];
char ch[maxn];
int codelen; typedef struct TreeNode* Tree;
struct TreeNode{
int weight;
Tree Left,Right;
};
typedef struct HeapNode* Heap;
struct HeapNode{
TreeNode Data[maxn];
int size;
}; Tree creatTree();
Heap creatHeap();
void Insert(Heap H,TreeNode T);
Tree Delete(Heap H);
Tree Huffman(Heap H);
int WPL(Tree T,int depth);
void JudgeTree(Tree T);
bool Judge(); int main(){
cin >> n; Tree T = creatTree();
Heap H = creatHeap(); for(int i = ; i < n; i++){
getchar();
cin >> ch[i] >> w[i];
H->Data[H->size].Left = H->Data[H->size].Right = NULL;
T->weight = w[i];
Insert(H,*T);
} T = Huffman(H); codelen = WPL(T,);
cin >> m;
while(m--){
if(Judge()) printf("Yes\n");
else printf("No\n");
} return ;
} Tree creatTree(){
Tree T = new TreeNode;
T->weight = ;
T->Left = T->Right = NULL;
return T;
} Heap creatHeap(){
Heap H = new HeapNode;
H->Data[].weight = -;
H->size = ;
return H;
} void Insert(Heap H,TreeNode T){
int i = ++H->size;
for(;T.weight < H->Data[i/].weight; i /= )
H->Data[i] = H->Data[i/];
H->Data[i] = T;
} Tree Huffman(Heap H){
Tree T = creatTree();
while(H->size != ){
T->Left = Delete(H);
T->Right = Delete(H);
T->weight = T->Left->weight + T->Right->weight;
Insert(H,*T);
}
T = Delete(H);
return T;
} Tree Delete(Heap H){
int child,parent;
TreeNode temp = H->Data[H->size--];
Tree T = creatTree();
*T = H->Data[];
for(parent = ; * parent <= H->size; parent = child){
child = parent * ;
if(child < H->size && H->Data[child+].weight < H->Data[child].weight)
child++;
if(H->Data[child].weight > temp.weight) break;
H->Data[parent] = H->Data[child];
}
H->Data[parent] = temp;
return T;
} int WPL(Tree T,int depth){
if(!T->Left && ! T->Right) return (depth*T->weight);
else return WPL(T->Left,depth+) + WPL(T->Right,depth+);
} bool Judge(){
char s1[maxn],s2[maxn];
bool flag = true;
Tree T = creatTree();
Tree pt = NULL;
for(int i = ; i < n; i++){
cin >> s1 >> s2;
if(strlen(s2) > n) return ;
int j;
for(j = ; s1[] != ch[j];j++);
wgh = w[j];
pt = T;
for(j = ; s2[j]; j++){
if(s2[j] == ''){
if(!pt->Left) pt->Left = creatTree();
pt = pt->Left;
}
if(s2[j] == ''){
if(!pt->Right) pt->Right = creatTree();
pt = pt->Right;
}
if(pt->weight) flag = false;
if(!s2[j+]){
if(pt->Left || pt->Right) flag = false;
else pt->weight = wgh;
}
}
}
if(!flag) return ;
cnt1 = cnt2 = ;
JudgeTree(T);
if(cnt1 != cnt2 + ) return ;
if(codelen == WPL(T,)) return ;
else return ;
} void JudgeTree(Tree T){
if(T){
if(T->Right&&T->Left) cnt2++;
else if(!T->Right && !T->Left) cnt1++;
else cnt1 = ;
JudgeTree(T->Left);
JudgeTree(T->Right);
}
}
05-树9 Huffman Codes (30 分)的更多相关文章
- pta5-9 Huffman Codes (30分)
5-9 Huffman Codes (30分) In 1953, David A. Huffman published his paper "A Method for the Const ...
- PTA 05-树9 Huffman Codes (30分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/671 5-9 Huffman Codes (30分) In 1953, David ...
- 05-树9 Huffman Codes (30 分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...
- pat树之专题(30分)
(好好复习是王道) 1115. Counting Nodes in a BST (30) 分析:简单题——将bst树构造出来,然后给每个节点打上高度.最后求出树的高度.然后count树高的节点数加上树 ...
- 05-树9 Huffman Codes (30 分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...
- 05-树9 Huffman Codes(30 分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...
- PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****
1057 Stack (30 分) Stack is one of the most fundamental data structures, which is based on the prin ...
- Huffman codes
05-树9 Huffman Codes(30 分) In 1953, David A. Huffman published his paper "A Method for the Const ...
- PAT 甲级 1053 Path of Equal Weight (30 分)(dfs,vector内元素排序,有一小坑点)
1053 Path of Equal Weight (30 分) Given a non-empty tree with root R, and with weight Wi assigne ...
随机推荐
- 我读《大数据时代的IT架构设计》
架构设计是一门艺术,对架构的掌握要通过多看,多学,多交流,多积累,从实战架构上总能吸收到很好的营养,这边书虽然 (一).hadoop技术处理电信行业的上网日志 根据上网的url或未知url爬取内容,进 ...
- Mac之如何查看已用端口
一.苹果自带的网络分析工具查看方法: OS X 10.9 下面 网络实用工具 从实用工具目录里消失了,可能苹果认为这个程序用的人太少就取消了吧.但是对于做互联网的人还是有点用的. 启动方法 ...
- spring aop记录用户的操作
1.命名空间 xmlns:aop="http://www.springframework.org/schema/aop" http://www.springframework.or ...
- OpenGL中的像素包装理解
OpenGL中的像素包装理解 像素包装 位图和像素图很少会被紧密包装到内存中.在许多硬件平台上,考虑到性能的原因位图和像素图的每一行的数据会从特殊的字节对齐地址开始.绝大多数编译 器会自动把变量和缓冲 ...
- B-spline Curves 学习之B样条曲线的系数计算与B样条曲线特例(6)
B-spline Curves: Computing the Coefficients 本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完成相关 ...
- handsontable-mobiles
适配移动端:文档不完整,现在只能适配ipad4
- delphi FastReport 安装方法
(最近记忆力真的不行了,装了很多遍,过段时间重装delphi又不记得了,又要折腾,现在先记录下来,留给下次翻) 1.下载安装包,这里提供一个百度云盘共享链接,版本为fastreport5: https ...
- Git Note - Branch
1. add a new branch cd workspace git branch user1/newbranch1 git checkout user1/newbranch1 or git ch ...
- 关于createTextRange和createRange的一些用法【转】
一.返回createTextRange的text和htmlText <mce:script language="javascript"><!--function ...
- OpenSSH服务及其相关应用
远程登录工具: telnet,TCP/23:认证明文,数据传输明文,不够安全,所以出现了ssh ssh:Secure SHell,TCP/22,刚开始免费,后来商业化了,所以出现了Openssh,这个 ...