In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1] f[1] c[2] f[2] ... c[N] f[N]

where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (≤), then followed by M student submissions. Each student submission consists of N lines, each in the format:

c[i] code[i]

where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0's and '1's.

Output Specification:

For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.

Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

Sample Input:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11

Sample Output:

Yes
Yes
No
No
#include<iostream>
#include<cstring>
using namespace std;
const int maxn = ; int n,m;
int wgh;
int cnt1,cnt2;
int w[maxn];
char ch[maxn];
int codelen; typedef struct TreeNode* Tree;
struct TreeNode{
int weight;
Tree Left,Right;
};
typedef struct HeapNode* Heap;
struct HeapNode{
TreeNode Data[maxn];
int size;
}; Tree creatTree();
Heap creatHeap();
void Insert(Heap H,TreeNode T);
Tree Delete(Heap H);
Tree Huffman(Heap H);
int WPL(Tree T,int depth);
void JudgeTree(Tree T);
bool Judge(); int main(){
cin >> n; Tree T = creatTree();
Heap H = creatHeap(); for(int i = ; i < n; i++){
getchar();
cin >> ch[i] >> w[i];
H->Data[H->size].Left = H->Data[H->size].Right = NULL;
T->weight = w[i];
Insert(H,*T);
} T = Huffman(H); codelen = WPL(T,);
cin >> m;
while(m--){
if(Judge()) printf("Yes\n");
else printf("No\n");
} return ;
} Tree creatTree(){
Tree T = new TreeNode;
T->weight = ;
T->Left = T->Right = NULL;
return T;
} Heap creatHeap(){
Heap H = new HeapNode;
H->Data[].weight = -;
H->size = ;
return H;
} void Insert(Heap H,TreeNode T){
int i = ++H->size;
for(;T.weight < H->Data[i/].weight; i /= )
H->Data[i] = H->Data[i/];
H->Data[i] = T;
} Tree Huffman(Heap H){
Tree T = creatTree();
while(H->size != ){
T->Left = Delete(H);
T->Right = Delete(H);
T->weight = T->Left->weight + T->Right->weight;
Insert(H,*T);
}
T = Delete(H);
return T;
} Tree Delete(Heap H){
int child,parent;
TreeNode temp = H->Data[H->size--];
Tree T = creatTree();
*T = H->Data[];
for(parent = ; * parent <= H->size; parent = child){
child = parent * ;
if(child < H->size && H->Data[child+].weight < H->Data[child].weight)
child++;
if(H->Data[child].weight > temp.weight) break;
H->Data[parent] = H->Data[child];
}
H->Data[parent] = temp;
return T;
} int WPL(Tree T,int depth){
if(!T->Left && ! T->Right) return (depth*T->weight);
else return WPL(T->Left,depth+) + WPL(T->Right,depth+);
} bool Judge(){
char s1[maxn],s2[maxn];
bool flag = true;
Tree T = creatTree();
Tree pt = NULL;
for(int i = ; i < n; i++){
cin >> s1 >> s2;
if(strlen(s2) > n) return ;
int j;
for(j = ; s1[] != ch[j];j++);
wgh = w[j];
pt = T;
for(j = ; s2[j]; j++){
if(s2[j] == ''){
if(!pt->Left) pt->Left = creatTree();
pt = pt->Left;
}
if(s2[j] == ''){
if(!pt->Right) pt->Right = creatTree();
pt = pt->Right;
}
if(pt->weight) flag = false;
if(!s2[j+]){
if(pt->Left || pt->Right) flag = false;
else pt->weight = wgh;
}
}
}
if(!flag) return ;
cnt1 = cnt2 = ;
JudgeTree(T);
if(cnt1 != cnt2 + ) return ;
if(codelen == WPL(T,)) return ;
else return ;
} void JudgeTree(Tree T){
if(T){
if(T->Right&&T->Left) cnt2++;
else if(!T->Right && !T->Left) cnt1++;
else cnt1 = ;
JudgeTree(T->Left);
JudgeTree(T->Right);
}
}

05-树9 Huffman Codes (30 分)的更多相关文章

  1. pta5-9 Huffman Codes (30分)

    5-9 Huffman Codes   (30分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  2. PTA 05-树9 Huffman Codes (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/671 5-9 Huffman Codes   (30分) In 1953, David ...

  3. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  4. pat树之专题(30分)

    (好好复习是王道) 1115. Counting Nodes in a BST (30) 分析:简单题——将bst树构造出来,然后给每个节点打上高度.最后求出树的高度.然后count树高的节点数加上树 ...

  5. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  6. 05-树9 Huffman Codes(30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  7. PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****

    1057 Stack (30 分)   Stack is one of the most fundamental data structures, which is based on the prin ...

  8. Huffman codes

    05-树9 Huffman Codes(30 分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  9. PAT 甲级 1053 Path of Equal Weight (30 分)(dfs,vector内元素排序,有一小坑点)

    1053 Path of Equal Weight (30 分)   Given a non-empty tree with root R, and with weight W​i​​ assigne ...

随机推荐

  1. 阿里云专属推荐码nuyxa6

    申请成功!您的推荐码为nuyxa6 恭喜您获得阿里云专属推荐码,推荐码有效期至2017-03-04 14:43:49. 我们会在到期日前两周以站内信的方式通知您新的有效期.

  2. Windows 环境下分布式跨域Session共享(转)

    出处:http://www.cnblogs.com/stangray/p/3328092.html 为什么还是那句话,在网上找了N篇Session共享,但真正可以直接解决问题的还是没有找到. 一.以下 ...

  3. MongoDB管理与开发实战详解文摘

    第1篇 基础篇 第1章 MongoDB简介 关系型数据库面临的问题:数据库并发负载高,海量数据存储与访问,数据库数据越来越大,事务管理的负担,关系型数据库读.写实时性的忽略,多表关联查询被弱化 第2章 ...

  4. Windows 访问 Oracle

    开发环境 vs2010 安装ODTwithODAC1120320_32bit.zip Win2003 64 位 1.不使用EF需要安装ODAC112021Xcopy_x64.zip开发环境中的Orac ...

  5. [operator]ubuntu + sublime + anaconda 自动补全、指定python版本

    ubuntu .sublime.anaconda都安装好之后,首先要解决的就是自动补全问题 Perference---->Browes Packages --->新建一个Python的文件 ...

  6. 23 DesignPatterns学习笔记:C++语言实现 --- 2.6 Facade

    23 DesignPatterns学习笔记:C++语言实现 --- 2.6 Facade 2016-07-22 (www.cnblogs.com/icmzn) 模式理解

  7. Linux的进程/线程间通信方式总结

    Linux系统中的进程间通信方式主要以下几种: 同一主机上的进程通信方式 * UNIX进程间通信方式: 包括管道(PIPE), 有名管道(FIFO), 和信号(Signal) * System V进程 ...

  8. 简述负载均衡和CDN技术

    曾经见到知乎上有人问“为什么像facebook这类的网站需要上千个工程师维护?”,下面的回答多种多样,但总结起来就是:一个高性能的web系统需要从无数个角度去考虑他,大到服务器的布局,小到软件中某个文 ...

  9. Linux Guard Service - 进程分裂与脱离

    进程分裂更名 void set_ps_name(char *name) { prctl(PR_SET_NAME, name); } 修改进程长名称 备份进程环境变量空间 for (i = 1; i & ...

  10. jenkins-cli命令使用总结

    jenkins-cli命令使用总结 1.在jenkins中查看Jenkins CLI的相关说明 jenkins-->系统管理-->Jenkins CLI:如下图 下载:jenkins-cl ...