CF1012C Hills 题解【DP】
思路还是比较简单的 dp 吧,但是就是想不出来…甚至类似的方程都被自己推翻了
Description
Welcome to Innopolis city. Throughout the whole year, Innopolis citizens suffer from everlasting city construction.
From the window in your room, you see the sequence of \(n\) hills, where \(i\)-th of them has height \(a_i\). The Innopolis administration wants to build some houses on the hills. However, for the sake of city appearance, a house can be only built on the hill, which is strictly higher than neighbouring hills (if they are present). For example, if the sequence of heights is \(5,4,6,2\), then houses could be built on hills with heights \(5\) and \(6\) only.
The Innopolis administration has an excavator, that can decrease the height of an arbitrary hill by one in one hour. The excavator can only work on one hill at a time. It is allowed to decrease hills up to zero height, or even to negative values. Increasing height of any hill is impossible. The city administration wants to build \(k\) houses, so there must be at least \(k\) hills that satisfy the condition above. What is the minimum time required to adjust the hills to achieve the administration's plan?
However, the exact value of \(k\) is not yet determined, so could you please calculate answers for all \(k\) in range \(1\le k\le \left\lceil\frac n2\right\rceil\)? Here \(\left\lceil\frac n2\right\rceil\) denotes \(n\) divided by two, rounded up.
Input
The first line of input contains the only integer \(n(1\le n\le 5000)\)—the number of the hills in the sequence.
Second line contains \(n\) integers \(a_i(1\le a_i\le 100\ 000)\)—the heights of the hills in the sequence.
Output
Print exactly \(\left\lceil\frac n2\right\rceil\) numbers separated by spaces. The \(i\)-th printed number should be equal to the minimum number of hours required to level hills so it becomes possible to build \(i\) houses.
Examples
input
5
1 1 1 1 1
output
1 2 2
input
3
1 2 3
output
0 2
input
5
1 2 3 2 2
output
0 1 3
Note
In the first example, to get at least one hill suitable for construction, one can decrease the second hill by one in one hour, then the sequence of heights becomes \(1,0,1,1,1\) and the first hill becomes suitable for construction.
In the first example, to get at least two or at least three suitable hills, one can decrease the second and the fourth hills, then the sequence of heights becomes \(1,0,1,0,1\), and hills \(1,3,5\) become suitable for construction.
题意
现在有 \(n\) 座连在一起的山,高度从左到右分别为 \(a_i\)。现在你有一台挖掘机,每分钟可以令某一个 \(a_i\) 减一。你可以在 \(a_i>a_{i-1}\) 且 \(a_i>a_{i+1}\) 的山峰 \(i\) 盖房子。问对于 \(1\le k\le \left\lceil\frac n2 \right\rceil\) 中的每个整数 \(k\),盖 \(k\) 栋房子至少需要多长时间。
题解
针对本题有一个贪心,也就是不会有相邻的两个山同时被挖。
因此对于每个 \(i\),如果不挖这个位置,那么 \(a_i\) 是可以直接用原数据的。还有一点推论,即当 \(i\) 位置盖房子时,它一定不会被挖。挖了只会影响左右两边使他们更矮,不会产生更优的答案。
令 \(f[i][j][0/1]\) 表示前 \(i\) 座山中,盖了 \(j\) 栋房子,第 \(i\) 座山是否盖了房子。
那么如果第 \(i\) 座山要盖房子,那么第 \(i\) 座山不会被挖,高度为 \(a_i\);同时,第 \(i-1\) 座山的高度最多为 \(a_i-1\)。但是为了如果第 \(i-2\) 座要盖房子,那么第 \(i-1\) 座山的高度最多为 \(\min(a_{i-2}-1,a_i-1)\);第 \(i-2\) 座山不盖房子时,第 \(i-1\) 座山的高度就只受 \(a_i\) 影响了。
如果第 \(i\) 座山不盖房子,那么考虑第 \(i-1\) 座山盖不盖房子就可以了。如果不盖,直接转移;否则把第 \(i\) 座山拉低到 \(a_{i-1}-1\) 的高度。
此时不考虑对后面的影响,因为我们的阶段就是前 \(i\) 座山。
那么用类似于增量法的思路时就可以当 \(i\) 是 \(n\) 来做,思路会清晰很多。
状态转移方程为
&f[i][j][1]=\begin{aligned}\min(&f[i-2][j-1][0]+\max(0,h[i-1]-h[i]+1),\\\ &f[i-2][j-1][1]+\max(0,h[i-1]-\min(h[i-2],h[i])+1)\end{aligned}\\\
&f[i][j][0]=\begin{aligned}\min(&f[i-1][j][1]+\max(0,h[i]-h[i-1]+1),\\\ &f[i-1][j][0])\end{aligned}
\end{aligned}
\]
最后对于每个 \(k\),输出 \(\min(f[n][k][0],f[n][k][1])\) 即可。
时间复杂度 \(O(n^2)\)。
Code
#include<cstdio>
#include<cstring>
int Min(int x,int y){return x<y?x:y;}
int Max(int x,int y){return x>y?x:y;}
int h[5050];
int f[5050][5050][2];
int main()
{
memset(f,0x3f,sizeof(f));
f[0][0][0]=0;//初始化
f[1][1][1]=0;
f[1][0][0]=0;
int n;
scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%d",&h[i]);
h[0]=0x3fffffff;
for(int i=2;i<=n;++i)
{
f[i][0][0]=f[i-1][0][0];
for(int j=1;j<=(i+1)/2;++j)
{
f[i][j][1]=Min(f[i-2][j-1][0]+Max(0,h[i-1]-h[i]+1),
f[i-2][j-1][1]+Max(0,h[i-1]-Min(h[i],h[i-2])+1));
f[i][j][0]=Min(f[i-1][j][0],
f[i-1][j][1]+Max(0,h[i]-h[i-1]+1));
}
}
for(int i=1;i<=(n+1)/2;++i)
printf("%d ",Min(f[n][i][0],f[n][i][1]));
return 0;
}
CF1012C Hills 题解【DP】的更多相关文章
- [FJOI2007]轮状病毒 题解(dp(找规律)+高精度)
[FJOI2007]轮状病毒 题解(dp(找规律)+高精度) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1335733 没什么好说的,直接把规律找出来,有 ...
- 【线型DP】CF1012C Hills 小山坡
来了来了. 题目: 给你n个数,你一次操作可以把某一个数-1(可以减为负数),你的目标是使任意的k个数严格小于它旁边的两个数(第一个数只用严格小于第二个数,第n个数只用严格小于第n-1个数),问最少需 ...
- CF1012C Hills
显然的DP是,dp[i][j][val] val是1e6的 简化 发现,其实决策很有限,最优解的i-1的val选择有限 题解 这里的一个trick是,f[i][j][0]转移不考虑a[i]和a[i-1 ...
- HDU 6787 Chess 2020百度之星 初赛三 T5 题解 dp
传送门:HDU 6787 Chess Problem Description 你现在有一个棋盘,上面有 n 个格子,格子从左往右,1,-,n 进行标号.你可以在棋盘上放置恰好 m 个传送器,并且对于每 ...
- 牛客练习赛69 火柴排队 题解(dp)
题目链接 题目大意 给你一个长为n(n<=5e3)的数组a.随机使得k个元素增加d.要你求多大的概率使得,这些数组元素的相对大小不发生改变 输出 n 行每行一个整数,第 i 行的整数表示 k=i ...
- 古韵之乞巧 题解 dp题
[noip模拟赛1]古韵之乞巧 描述 闺女求天女,更阑意未阑. 玉庭开粉席,罗袖捧金盘. 向月穿针易,临风整线难. 不知谁得巧,明旦试相看. ——祖咏<七夕> 女子乞巧,是七夕的重头戏 ...
- Codeforces 1012C Hills【DP】*
Codeforces 1012C Hills Welcome to Innopolis city. Throughout the whole year, Innopolis citizens suff ...
- Codeforces 691E题解 DP+矩阵快速幂
题面 传送门:http://codeforces.com/problemset/problem/691/E E. Xor-sequences time limit per test3 seconds ...
- Codeforces 833B 题解(DP+线段树)
题面 传送门:http://codeforces.com/problemset/problem/833/B B. The Bakery time limit per test2.5 seconds m ...
随机推荐
- [Java] 获取当前Project所在的路径
String projectPath = System.getProperty ("user.dir").toString()
- Andriod 之数据获取
服务端Model using System; using System.Collections.Generic; using System.Linq; using System.Web; namesp ...
- scala中Nil用法
http://www.runoob.com/scala/scala-lists.html 即Nil是空List 双冒号是追加进入 package com.yjsj.spark object scala ...
- C的打印输出格式
#include<stdio.h> int main() { float test1=12.3224356546565461-0.1; int test2=13; char test3[] ...
- Android-自定义联系人快速索引
效果图: 布局去指定 view.custom.shangguigucustomview.MyCustomIndexView 自定义View对象 <!-- 自定义联系人快速索引 --> &l ...
- 2.自己的Github试用过程
打开我个人的Github,我试着做些简单的试用.首先,经过简短描述,我成功创建了一个新的存储库
- JavaScript中的垃圾回收和内存泄漏
摘要: JS内存管理. 作者:浪里行舟 Fundebug经授权转载,版权归原作者所有. 前言 程序的运行需要内存.只要程序提出要求,操作系统或者运行时就必须供给内存.所谓的内存泄漏简单来说是不再用到的 ...
- gvim 全屏 插件
1.这里下载插件zip解压后,将fullscreen.dll放到gvim.exe同目录下 2.执行 :call libcallnr()//切换全屏模式 3.上面的命令非常麻烦,可以在_vimrc中ma ...
- pipeline构建时报错问题解决
问题: 1.No such field found: field java.lang.String sh. Administrators can decide whether to approve o ...
- File Path Directory总结
阅读目录 开始 Path 对路径 字符串进行操作 获得后缀 能合并路径 获取文件名 Directory和DirectoryInfo 对目录进行操作 判断目录是否存在 创建目录 删除目录 获取目录下所 ...