作为Oracle开发工程师,推荐大伙看看

PIVOT and UNPIVOT Operators in Oracle Database 11g Release 1

This article shows how to use the new PIVOT and UNPIVOT operators in 11g, as well as giving a pre-11g solution to the same problems.

Related articles.

PIVOT

The PIVOT operator takes data in separate rows, aggregates it and converts it into columns. To see the PIVOT operator in action we need to create a test table.

CREATE TABLE pivot_test (

id            NUMBER,

customer_id   NUMBER,

product_code  VARCHAR2(5),

quantity      NUMBER

);

INSERT INTO pivot_test VALUES (1, 1, 'A', 10);

INSERT INTO pivot_test VALUES (2, 1, 'B', 20);

INSERT INTO pivot_test VALUES (3, 1, 'C', 30);

INSERT INTO pivot_test VALUES (4, 2, 'A', 40);

INSERT INTO pivot_test VALUES (5, 2, 'C', 50);

INSERT INTO pivot_test VALUES (6, 3, 'A', 60);

INSERT INTO pivot_test VALUES (7, 3, 'B', 70);

INSERT INTO pivot_test VALUES (8, 3, 'C', 80);

INSERT INTO pivot_test VALUES (9, 3, 'D', 90);

INSERT INTO pivot_test VALUES (10, 4, 'A', 100);

COMMIT;

So our test data starts off looking like this.

SELECT * FROM pivot_test;

ID CUSTOMER_ID PRODU   QUANTITY

---------- ----------- ----- ----------

1           1 A             10

2           1 B             20

3           1 C             30

4           2 A             40

5           2 C             50

6           3 A             60

7           3 B             70

8           3 C             80

9           3 D             90

10           4 A            100

10 rows selected.

SQL>

In its basic form the PIVOT operator is quite limited. We are forced to list the required values to PIVOT using the IN clause.

SELECT *

FROM   (SELECT product_code, quantity

FROM   pivot_test)

PIVOT  (SUM(quantity) AS sum_quantity FOR (product_code) IN ('A' AS a, 'B' AS b, 'C' AS c));

A_SUM_QUANTITY B_SUM_QUANTITY C_SUM_QUANTITY

-------------- -------------- --------------

210             90            160

1 row selected.

SQL>

If we want to break it down by customer, we simply include the CUSTOMER_ID column in the initial select list.

SELECT *

FROM   (SELECT customer_id, product_code, quantity

FROM   pivot_test)

PIVOT  (SUM(quantity) AS sum_quantity FOR (product_code) IN ('A' AS a, 'B' AS b, 'C' AS c))

ORDER BY customer_id;

CUSTOMER_ID A_SUM_QUANTITY B_SUM_QUANTITY C_SUM_QUANTITY

----------- -------------- -------------- --------------

1             10             20             30

2             40                            50

3             60             70             80

4            100

4 rows selected.

SQL>

Prior to 11g we could accomplish a similar result using the DECODE function combined with aggregate functions.

SELECT SUM(DECODE(product_code, 'A', quantity, 0)) AS a_sum_quantity,

SUM(DECODE(product_code, 'B', quantity, 0)) AS b_sum_quantity,

SUM(DECODE(product_code, 'C', quantity, 0)) AS c_sum_quantity

FROM   pivot_test

ORDER BY customer_id;

A_SUM_QUANTITY B_SUM_QUANTITY C_SUM_QUANTITY

-------------- -------------- --------------

210             90            160

1 row selected.

SQL>

SELECT customer_id,

SUM(DECODE(product_code, 'A', quantity, 0)) AS a_sum_quantity,

SUM(DECODE(product_code, 'B', quantity, 0)) AS b_sum_quantity,

SUM(DECODE(product_code, 'C', quantity, 0)) AS c_sum_quantity

FROM   pivot_test

GROUP BY customer_id

ORDER BY customer_id;

CUSTOMER_ID A_SUM_QUANTITY B_SUM_QUANTITY C_SUM_QUANTITY

----------- -------------- -------------- --------------

1             10             20             30

2             40              0             50

3             60             70             80

4            100              0              0

4 rows selected.

SQL>

Adding the XML keyword to the PIVOT operator allows us to convert the generated pivot results to XML format. It also makes the PIVOT a little more flexible, allowing us to replace the hard coded IN clause with a subquery, or the ANY wildcard.

SET LONG 10000

SELECT *

FROM   (SELECT product_code, quantity

FROM   pivot_test)

PIVOT XML (SUM(quantity) AS sum_quantity FOR (product_code) IN (SELECT DISTINCT product_code

FROM   pivot_test

WHERE  id < 10));

product_code_XML

----------------------------------------------------------------------------------------------------

<PivotSet><item><column name = "PRODUCT_CODE">A</column><column name = "SUM_QUANTITY">210</column></

item><item><column name = "PRODUCT_CODE">B</column><column name = "SUM_QUANTITY">90</column></item><

item><column name = "PRODUCT_CODE">C</column><column name = "SUM_QUANTITY">160</column></item><item>

<column name = "PRODUCT_CODE">D</column><column name = "SUM_QUANTITY">90</column></item></PivotSet>

1 row selected.

SQL>

SELECT *

FROM   (SELECT product_code, quantity

FROM   pivot_test)

PIVOT XML (SUM(quantity) AS sum_quantity FOR (product_code) IN (ANY));

product_code_XML

----------------------------------------------------------------------------------------------------

<PivotSet><item><column name = "PRODUCT_CODE">A</column><column name = "SUM_QUANTITY">210</column></

item><item><column name = "PRODUCT_CODE">B</column><column name = "SUM_QUANTITY">90</column></item><

item><column name = "PRODUCT_CODE">C</column><column name = "SUM_QUANTITY">160</column></item><item>

<column name = "PRODUCT_CODE">D</column><column name = "SUM_QUANTITY">90</column></item></PivotSet>

1 row selected.

SQL>

Once again, the results can be broken down by customer, with each customers XML presented as a separate row.

SET LONG 10000

SELECT *

FROM   (SELECT customer_id, product_code, quantity

FROM   pivot_test)

PIVOT XML (SUM(quantity) AS sum_quantity FOR (product_code) IN (SELECT DISTINCT product_code

FROM   pivot_test));

CUSTOMER_ID

-----------

PRODUCT_CODE_XML

----------------------------------------------------------------------------------------------------

1

<PivotSet><item><column name = "PRODUCT_CODE">A</column><column name = "SUM_QUANTITY">10</column></i

tem><item><column name = "PRODUCT_CODE">B</column><column name = "SUM_QUANTITY">20</column></item><i

tem><column name = "PRODUCT_CODE">C</column><column name = "SUM_QUANTITY">30</column></item><item><c

olumn name = "PRODUCT_CODE">D</column><column name = "SUM_QUANTITY"></column></item></PivotSet>

2

<PivotSet><item><column name = "PRODUCT_CODE">A</column><column name = "SUM_QUANTITY">40</column></i

tem><item><column name = "PRODUCT_CODE">B</column><column name = "SUM_QUANTITY"></column></item><ite

CUSTOMER_ID

-----------

PRODUCT_CODE_XML

----------------------------------------------------------------------------------------------------

m><column name = "PRODUCT_CODE">C</column><column name = "SUM_QUANTITY">50</column></item><item><col

umn name = "PRODUCT_CODE">D</column><column name = "SUM_QUANTITY"></column></item></PivotSet>

3

<PivotSet><item><column name = "PRODUCT_CODE">A</column><column name = "SUM_QUANTITY">60</column></i

tem><item><column name = "PRODUCT_CODE">B</column><column name = "SUM_QUANTITY">70</column></item><i

tem><column name = "PRODUCT_CODE">C</column><column name = "SUM_QUANTITY">80</column></item><item><c

olumn name = "PRODUCT_CODE">D</column><column name = "SUM_QUANTITY">90</column></item></PivotSet>

CUSTOMER_ID

-----------

PRODUCT_CODE_XML

----------------------------------------------------------------------------------------------------

4

<PivotSet><item><column name = "PRODUCT_CODE">A</column><column name = "SUM_QUANTITY">100</column></

item><item><column name = "PRODUCT_CODE">B</column><column name = "SUM_QUANTITY"></column></item><it

em><column name = "PRODUCT_CODE">C</column><column name = "SUM_QUANTITY"></column></item><item><colu

mn name = "PRODUCT_CODE">D</column><column name = "SUM_QUANTITY"></column></item></PivotSet>

4 rows selected.

SQL>

UNPIVOT

The UNPIVOT operator converts column-based data into separate rows. To see the UNPIVOT operator in action we need to create a test table.

CREATE TABLE unpivot_test (

id              NUMBER,

customer_id     NUMBER,

product_code_a  NUMBER,

product_code_b  NUMBER,

product_code_c  NUMBER,

product_code_d  NUMBER

);

INSERT INTO unpivot_test VALUES (1, 101, 10, 20, 30, NULL);

INSERT INTO unpivot_test VALUES (2, 102, 40, NULL, 50, NULL);

INSERT INTO unpivot_test VALUES (3, 103, 60, 70, 80, 90);

INSERT INTO unpivot_test VALUES (4, 104, 100, NULL, NULL, NULL);

COMMIT;

So our test data starts off looking like this.

SELECT * FROM unpivot_test;

ID CUSTOMER_ID PRODUCT_CODE_A PRODUCT_CODE_B PRODUCT_CODE_C PRODUCT_CODE_D

---------- ----------- -------------- -------------- -------------- --------------

1         101             10             20             30

2         102             40                            50

3         103             60             70             80             90

4         104            100

4 rows selected.

SQL>

The UNPIVOT operator converts this column-based data into individual rows.

SELECT *

FROM   unpivot_test

UNPIVOT (quantity FOR product_code IN (product_code_a AS 'A', product_code_b AS 'B', product_code_c AS 'C', product_code_d AS 'D'));

ID CUSTOMER_ID P   QUANTITY

---------- ----------- - ----------

1         101 A         10

1         101 B         20

1         101 C         30

2         102 A         40

2         102 C         50

3         103 A         60

3         103 B         70

3         103 C         80

3         103 D         90

4         104 A        100

10 rows selected.

SQL>

There are several things to note about the query:

  • The required column names, in this case QUANTITY and PRODUCT_CODE, are define in the UNPIVOT clause. These can be set to any name not currently in the driving table.
  • The columns to be unpivoted must be named in the IN clause.
  • The PRODUCT_CODE value will match the column name it is derived from, unless you alias it to another value.
  • By default the EXCLUDE NULLS clause is used. To override the default behaviour use the INCLUDE NULLS clause.

The following query shows the inclusion of the INCLUDE NULLS clause.

SELECT *

FROM   unpivot_test

UNPIVOT INCLUDE NULLS (quantity FOR product_code IN (product_code_a AS 'A', product_code_b AS 'B', product_code_c AS 'C', product_code_d AS 'D'));

ID CUSTOMER_ID P   QUANTITY

---------- ----------- - ----------

1         101 A         10

1         101 B         20

1         101 C         30

1         101 D

2         102 A         40

2         102 B

2         102 C         50

2         102 D

3         103 A         60

3         103 B         70

3         103 C         80

ID CUSTOMER_ID P   QUANTITY

---------- ----------- - ----------

3         103 D         90

4         104 A        100

4         104 B

4         104 C

4         104 D

16 rows selected.

SQL>

Prior to 11g, we can get the same result using the DECODE function and a pivot table with the correct number of rows. In the following example we use the CONNECT BY clause in a query from dual to generate the correct number of rows for the unpivot operation.

SELECT id,

customer_id,

DECODE(unpivot_row, 1, 'A',

2, 'B',

3, 'C',

4, 'D',

'N/A') AS product_code,

DECODE(unpivot_row, 1, product_code_a,

2, product_code_b,

3, product_code_c,

4, product_code_d,

'N/A') AS quantity

FROM   unpivot_test,

(SELECT level AS unpivot_row FROM dual CONNECT BY level <= 4)

ORDER BY 1,2,3;

ID CUSTOMER_ID PRO   QUANTITY

---------- ----------- --- ----------

1         101 A           10

1         101 B           20

1         101 C           30

1         101 D

2         102 A           40

2         102 B

2         102 C           50

2         102 D

3         103 A           60

3         103 B           70

3         103 C           80

ID CUSTOMER_ID PRO   QUANTITY

---------- ----------- --- ----------

3         103 D           90

4         104 A          100

4         104 B

4         104 C

4         104 D

16 rows selected.

SQL>

Oracle11g 行列转换函数PIVOT and UNPIVOT的更多相关文章

  1. Oracle 行列转换函数pivot、unpivot的使用(二)

    一.行转列pivot 关键函数pivot,其用法如下 pivot(聚合函数 for 列名 in(类型)) select * from table_name pivot(max(column_name) ...

  2. SQL(横表和纵表)行列转换,PIVOT与UNPIVOT的区别和使用方法举例,合并列的例子

    使用过SQL Server 2000的人都知道,要想实现行列转换,必须综合利用聚合函数和动态SQL,具体实现起来需要一定的技巧,而在SQL Server 2005中,使用新引进的关键字PIVOT/UN ...

  3. 行列转换小结 Pivot ,Unpivot (转,改)

    行专列 Pivot 1)SQL 2000版本 静态 SELECT ID , SUM(CASE Code WHEN 'Item1' THEN Value END) AS Item1 , SUM(CASE ...

  4. [转]Oracle SQL函数pivot、unpivot转置函数实现行转列、列转行

    原文地址:http://blog.csdn.net/seandba/article/details/72730657 函数PIVOT.UNPIVOT转置函数实现行转列.列转行,效果如下图所示: 1.P ...

  5. oracle行列转换函数的使用

    oracle 10g wmsys.wm_concat行列转换函数的使用: 首先让我们来看看这个神奇的函数wm_concat(列名),该函数可以把列值以","号分隔起来,并显示成一行 ...

  6. KingbaseES 行列转换函数

    关键字:    行专列,列转行, pivot, unpivot 行列转换是在数据分析中经常用到的一项功能,KingbaseES从V8R6C3B0071版本开始通过扩展插件(kdb_utils_func ...

  7. oracle 行列转换函数之WM_CONCAT和LISTAGG的使用(一)

    一.wm_concat函数 wm_concat能够实现同样的功能,但是有时在11g中使用需要用to_char()进行转换,否则会出现不兼容现象(WMSYS.WM_CONCAT: 依赖WMSYS 用户, ...

  8. oracle 行转列函数pivot和unpivot

    今天接到业务部门的一个需求,需要对同一公司的不同财务指标进行排序,需要用到oracle的行转列函数unpivot. 财务报表的表结构为: 要实现业务部门的排序筛选功能,需要首先将行数据转为列数据: 使 ...

  9. SQL SERVER 合并重复行,行列转换

    引用自:http://www.cnblogs.com/love-summer/archive/2012/03/27/2419778.html sql server2000 里面如何实现oracle10 ...

随机推荐

  1. windows操作系统用命令提示符查看占用端口号的进程

    在开发中有时我们需要确定哪个占用了8080端口,在windows命令行窗口下执行: 命令执行后打印出来的结果如下所示:

  2. 理解webpack4.splitChunks之maxAsyncRequests

    maxAsyncRequests和maxInitialRequests有相似之处,它俩都是用来限制拆分数量的,maxInitialRequests是用来限制入口的拆分数量而maxAsyncReques ...

  3. Http Status Code 套餐合集(转载)

    1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状态代码. 100(继续)请求者应当继续提出请求. 服务器返回此代码表示已收到请求的第一部分,正在等待其余部分. 101(切换协议)请求者已要 ...

  4. jquery操作select(选中,取值)

    最近工作中总出现select 和 option问题,整理一下,内容大部分源于网络资料 一.基础取值问题 例如<select class="selector"></ ...

  5. Climbing Stairs 爬楼梯问题,每次可以走1或2步,爬上n层楼梯总方法 (变相fibonacci)

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  6. 经典的 div + css 鼠标 hover 下拉菜单

    经典的 div + css 鼠标 hover 下拉菜单 效果图: 源码: <html> <head> <meta charset="utf-8"> ...

  7. Python爬虫教程-11-proxy代理IP,隐藏地址(猫眼电影)

    Python爬虫教程-11-proxy代理IP,隐藏地址(猫眼电影) ProxyHandler处理(代理服务器),使用代理IP,是爬虫的常用手段,通常使用UserAgent 伪装浏览器爬取仍然可能被网 ...

  8. leetcode coding base

    1. Contains Duplicate 2. Contains Duplicate II 3. Contains Duplicate III

  9. Ubuntu桌面显示超大,现在显示不全

    按住alt可以自由拖动窗口或者滚动鼠标滚动轮,整体放大缩小桌面把窗口拖动到显示设置然后调整菜单和标题栏缩放比例

  10. python错误和异常(1)

    1  SyntaxError: Python解释器语法错误,是唯一不是在运行时发生的异常. 2 检测和处理异常 try语句有两种主要形式:try-except 和 try-finally. 只能二选一 ...