Oracle11g 行列转换函数PIVOT and UNPIVOT
作为Oracle开发工程师,推荐大伙看看
PIVOT and UNPIVOT Operators in Oracle Database 11g Release 1
This article shows how to use the new PIVOT and UNPIVOT operators in 11g, as well as giving a pre-11g solution to the same problems.
Related articles.
PIVOT
The PIVOT operator takes data in separate rows, aggregates it and converts it into columns. To see the PIVOT operator in action we need to create a test table.
CREATE TABLE pivot_test (
id NUMBER,
customer_id NUMBER,
product_code VARCHAR2(5),
quantity NUMBER
);
INSERT INTO pivot_test VALUES (1, 1, 'A', 10);
INSERT INTO pivot_test VALUES (2, 1, 'B', 20);
INSERT INTO pivot_test VALUES (3, 1, 'C', 30);
INSERT INTO pivot_test VALUES (4, 2, 'A', 40);
INSERT INTO pivot_test VALUES (5, 2, 'C', 50);
INSERT INTO pivot_test VALUES (6, 3, 'A', 60);
INSERT INTO pivot_test VALUES (7, 3, 'B', 70);
INSERT INTO pivot_test VALUES (8, 3, 'C', 80);
INSERT INTO pivot_test VALUES (9, 3, 'D', 90);
INSERT INTO pivot_test VALUES (10, 4, 'A', 100);
COMMIT;
So our test data starts off looking like this.
SELECT * FROM pivot_test;
ID CUSTOMER_ID PRODU QUANTITY
---------- ----------- ----- ----------
1 1 A 10
2 1 B 20
3 1 C 30
4 2 A 40
5 2 C 50
6 3 A 60
7 3 B 70
8 3 C 80
9 3 D 90
10 4 A 100
10 rows selected.
SQL>
In its basic form the PIVOT operator is quite limited. We are forced to list the required values to PIVOT using the IN clause.
SELECT *
FROM (SELECT product_code, quantity
FROM pivot_test)
PIVOT (SUM(quantity) AS sum_quantity FOR (product_code) IN ('A' AS a, 'B' AS b, 'C' AS c));
A_SUM_QUANTITY B_SUM_QUANTITY C_SUM_QUANTITY
-------------- -------------- --------------
210 90 160
1 row selected.
SQL>
If we want to break it down by customer, we simply include the CUSTOMER_ID column in the initial select list.
SELECT *
FROM (SELECT customer_id, product_code, quantity
FROM pivot_test)
PIVOT (SUM(quantity) AS sum_quantity FOR (product_code) IN ('A' AS a, 'B' AS b, 'C' AS c))
ORDER BY customer_id;
CUSTOMER_ID A_SUM_QUANTITY B_SUM_QUANTITY C_SUM_QUANTITY
----------- -------------- -------------- --------------
1 10 20 30
2 40 50
3 60 70 80
4 100
4 rows selected.
SQL>
Prior to 11g we could accomplish a similar result using the DECODE function combined with aggregate functions.
SELECT SUM(DECODE(product_code, 'A', quantity, 0)) AS a_sum_quantity,
SUM(DECODE(product_code, 'B', quantity, 0)) AS b_sum_quantity,
SUM(DECODE(product_code, 'C', quantity, 0)) AS c_sum_quantity
FROM pivot_test
ORDER BY customer_id;
A_SUM_QUANTITY B_SUM_QUANTITY C_SUM_QUANTITY
-------------- -------------- --------------
210 90 160
1 row selected.
SQL>
SELECT customer_id,
SUM(DECODE(product_code, 'A', quantity, 0)) AS a_sum_quantity,
SUM(DECODE(product_code, 'B', quantity, 0)) AS b_sum_quantity,
SUM(DECODE(product_code, 'C', quantity, 0)) AS c_sum_quantity
FROM pivot_test
GROUP BY customer_id
ORDER BY customer_id;
CUSTOMER_ID A_SUM_QUANTITY B_SUM_QUANTITY C_SUM_QUANTITY
----------- -------------- -------------- --------------
1 10 20 30
2 40 0 50
3 60 70 80
4 100 0 0
4 rows selected.
SQL>
Adding the XML keyword to the PIVOT operator allows us to convert the generated pivot results to XML format. It also makes the PIVOT a little more flexible, allowing us to replace the hard coded IN clause with a subquery, or the ANY wildcard.
SET LONG 10000
SELECT *
FROM (SELECT product_code, quantity
FROM pivot_test)
PIVOT XML (SUM(quantity) AS sum_quantity FOR (product_code) IN (SELECT DISTINCT product_code
FROM pivot_test
WHERE id < 10));
product_code_XML
----------------------------------------------------------------------------------------------------
<PivotSet><item><column name = "PRODUCT_CODE">A</column><column name = "SUM_QUANTITY">210</column></
item><item><column name = "PRODUCT_CODE">B</column><column name = "SUM_QUANTITY">90</column></item><
item><column name = "PRODUCT_CODE">C</column><column name = "SUM_QUANTITY">160</column></item><item>
<column name = "PRODUCT_CODE">D</column><column name = "SUM_QUANTITY">90</column></item></PivotSet>
1 row selected.
SQL>
SELECT *
FROM (SELECT product_code, quantity
FROM pivot_test)
PIVOT XML (SUM(quantity) AS sum_quantity FOR (product_code) IN (ANY));
product_code_XML
----------------------------------------------------------------------------------------------------
<PivotSet><item><column name = "PRODUCT_CODE">A</column><column name = "SUM_QUANTITY">210</column></
item><item><column name = "PRODUCT_CODE">B</column><column name = "SUM_QUANTITY">90</column></item><
item><column name = "PRODUCT_CODE">C</column><column name = "SUM_QUANTITY">160</column></item><item>
<column name = "PRODUCT_CODE">D</column><column name = "SUM_QUANTITY">90</column></item></PivotSet>
1 row selected.
SQL>
Once again, the results can be broken down by customer, with each customers XML presented as a separate row.
SET LONG 10000
SELECT *
FROM (SELECT customer_id, product_code, quantity
FROM pivot_test)
PIVOT XML (SUM(quantity) AS sum_quantity FOR (product_code) IN (SELECT DISTINCT product_code
FROM pivot_test));
CUSTOMER_ID
-----------
PRODUCT_CODE_XML
----------------------------------------------------------------------------------------------------
1
<PivotSet><item><column name = "PRODUCT_CODE">A</column><column name = "SUM_QUANTITY">10</column></i
tem><item><column name = "PRODUCT_CODE">B</column><column name = "SUM_QUANTITY">20</column></item><i
tem><column name = "PRODUCT_CODE">C</column><column name = "SUM_QUANTITY">30</column></item><item><c
olumn name = "PRODUCT_CODE">D</column><column name = "SUM_QUANTITY"></column></item></PivotSet>
2
<PivotSet><item><column name = "PRODUCT_CODE">A</column><column name = "SUM_QUANTITY">40</column></i
tem><item><column name = "PRODUCT_CODE">B</column><column name = "SUM_QUANTITY"></column></item><ite
CUSTOMER_ID
-----------
PRODUCT_CODE_XML
----------------------------------------------------------------------------------------------------
m><column name = "PRODUCT_CODE">C</column><column name = "SUM_QUANTITY">50</column></item><item><col
umn name = "PRODUCT_CODE">D</column><column name = "SUM_QUANTITY"></column></item></PivotSet>
3
<PivotSet><item><column name = "PRODUCT_CODE">A</column><column name = "SUM_QUANTITY">60</column></i
tem><item><column name = "PRODUCT_CODE">B</column><column name = "SUM_QUANTITY">70</column></item><i
tem><column name = "PRODUCT_CODE">C</column><column name = "SUM_QUANTITY">80</column></item><item><c
olumn name = "PRODUCT_CODE">D</column><column name = "SUM_QUANTITY">90</column></item></PivotSet>
CUSTOMER_ID
-----------
PRODUCT_CODE_XML
----------------------------------------------------------------------------------------------------
4
<PivotSet><item><column name = "PRODUCT_CODE">A</column><column name = "SUM_QUANTITY">100</column></
item><item><column name = "PRODUCT_CODE">B</column><column name = "SUM_QUANTITY"></column></item><it
em><column name = "PRODUCT_CODE">C</column><column name = "SUM_QUANTITY"></column></item><item><colu
mn name = "PRODUCT_CODE">D</column><column name = "SUM_QUANTITY"></column></item></PivotSet>
4 rows selected.
SQL>
UNPIVOT
The UNPIVOT operator converts column-based data into separate rows. To see the UNPIVOT operator in action we need to create a test table.
CREATE TABLE unpivot_test (
id NUMBER,
customer_id NUMBER,
product_code_a NUMBER,
product_code_b NUMBER,
product_code_c NUMBER,
product_code_d NUMBER
);
INSERT INTO unpivot_test VALUES (1, 101, 10, 20, 30, NULL);
INSERT INTO unpivot_test VALUES (2, 102, 40, NULL, 50, NULL);
INSERT INTO unpivot_test VALUES (3, 103, 60, 70, 80, 90);
INSERT INTO unpivot_test VALUES (4, 104, 100, NULL, NULL, NULL);
COMMIT;
So our test data starts off looking like this.
SELECT * FROM unpivot_test;
ID CUSTOMER_ID PRODUCT_CODE_A PRODUCT_CODE_B PRODUCT_CODE_C PRODUCT_CODE_D
---------- ----------- -------------- -------------- -------------- --------------
1 101 10 20 30
2 102 40 50
3 103 60 70 80 90
4 104 100
4 rows selected.
SQL>
The UNPIVOT operator converts this column-based data into individual rows.
SELECT *
FROM unpivot_test
UNPIVOT (quantity FOR product_code IN (product_code_a AS 'A', product_code_b AS 'B', product_code_c AS 'C', product_code_d AS 'D'));
ID CUSTOMER_ID P QUANTITY
---------- ----------- - ----------
1 101 A 10
1 101 B 20
1 101 C 30
2 102 A 40
2 102 C 50
3 103 A 60
3 103 B 70
3 103 C 80
3 103 D 90
4 104 A 100
10 rows selected.
SQL>
There are several things to note about the query:
- The required column names, in this case QUANTITY and PRODUCT_CODE, are define in the UNPIVOT clause. These can be set to any name not currently in the driving table.
- The columns to be unpivoted must be named in the IN clause.
- The PRODUCT_CODE value will match the column name it is derived from, unless you alias it to another value.
- By default the EXCLUDE NULLS clause is used. To override the default behaviour use the INCLUDE NULLS clause.
The following query shows the inclusion of the INCLUDE NULLS clause.
SELECT *
FROM unpivot_test
UNPIVOT INCLUDE NULLS (quantity FOR product_code IN (product_code_a AS 'A', product_code_b AS 'B', product_code_c AS 'C', product_code_d AS 'D'));
ID CUSTOMER_ID P QUANTITY
---------- ----------- - ----------
1 101 A 10
1 101 B 20
1 101 C 30
1 101 D
2 102 A 40
2 102 B
2 102 C 50
2 102 D
3 103 A 60
3 103 B 70
3 103 C 80
ID CUSTOMER_ID P QUANTITY
---------- ----------- - ----------
3 103 D 90
4 104 A 100
4 104 B
4 104 C
4 104 D
16 rows selected.
SQL>
Prior to 11g, we can get the same result using the DECODE function and a pivot table with the correct number of rows. In the following example we use the CONNECT BY clause in a query from dual to generate the correct number of rows for the unpivot operation.
SELECT id,
customer_id,
DECODE(unpivot_row, 1, 'A',
2, 'B',
3, 'C',
4, 'D',
'N/A') AS product_code,
DECODE(unpivot_row, 1, product_code_a,
2, product_code_b,
3, product_code_c,
4, product_code_d,
'N/A') AS quantity
FROM unpivot_test,
(SELECT level AS unpivot_row FROM dual CONNECT BY level <= 4)
ORDER BY 1,2,3;
ID CUSTOMER_ID PRO QUANTITY
---------- ----------- --- ----------
1 101 A 10
1 101 B 20
1 101 C 30
1 101 D
2 102 A 40
2 102 B
2 102 C 50
2 102 D
3 103 A 60
3 103 B 70
3 103 C 80
ID CUSTOMER_ID PRO QUANTITY
---------- ----------- --- ----------
3 103 D 90
4 104 A 100
4 104 B
4 104 C
4 104 D
16 rows selected.
SQL>
Oracle11g 行列转换函数PIVOT and UNPIVOT的更多相关文章
- Oracle 行列转换函数pivot、unpivot的使用(二)
一.行转列pivot 关键函数pivot,其用法如下 pivot(聚合函数 for 列名 in(类型)) select * from table_name pivot(max(column_name) ...
- SQL(横表和纵表)行列转换,PIVOT与UNPIVOT的区别和使用方法举例,合并列的例子
使用过SQL Server 2000的人都知道,要想实现行列转换,必须综合利用聚合函数和动态SQL,具体实现起来需要一定的技巧,而在SQL Server 2005中,使用新引进的关键字PIVOT/UN ...
- 行列转换小结 Pivot ,Unpivot (转,改)
行专列 Pivot 1)SQL 2000版本 静态 SELECT ID , SUM(CASE Code WHEN 'Item1' THEN Value END) AS Item1 , SUM(CASE ...
- [转]Oracle SQL函数pivot、unpivot转置函数实现行转列、列转行
原文地址:http://blog.csdn.net/seandba/article/details/72730657 函数PIVOT.UNPIVOT转置函数实现行转列.列转行,效果如下图所示: 1.P ...
- oracle行列转换函数的使用
oracle 10g wmsys.wm_concat行列转换函数的使用: 首先让我们来看看这个神奇的函数wm_concat(列名),该函数可以把列值以","号分隔起来,并显示成一行 ...
- KingbaseES 行列转换函数
关键字: 行专列,列转行, pivot, unpivot 行列转换是在数据分析中经常用到的一项功能,KingbaseES从V8R6C3B0071版本开始通过扩展插件(kdb_utils_func ...
- oracle 行列转换函数之WM_CONCAT和LISTAGG的使用(一)
一.wm_concat函数 wm_concat能够实现同样的功能,但是有时在11g中使用需要用to_char()进行转换,否则会出现不兼容现象(WMSYS.WM_CONCAT: 依赖WMSYS 用户, ...
- oracle 行转列函数pivot和unpivot
今天接到业务部门的一个需求,需要对同一公司的不同财务指标进行排序,需要用到oracle的行转列函数unpivot. 财务报表的表结构为: 要实现业务部门的排序筛选功能,需要首先将行数据转为列数据: 使 ...
- SQL SERVER 合并重复行,行列转换
引用自:http://www.cnblogs.com/love-summer/archive/2012/03/27/2419778.html sql server2000 里面如何实现oracle10 ...
随机推荐
- Postman如何调试
在用Postman接口测试过程当中,肯定少不了调试,下面记录一下Postman如何通过控制台输出进行调试: 一.打开控制台(View-Show Postman Console) 二.预置测试数据(测试 ...
- Java常见异常类
NullpointException(空指针异常)ClassNotFoundException(类找不到异常)ClassCastException(类型转换异常)IllegalArgumentExce ...
- js中的正则表达式的运用
正则表达式是一个拆分字符串并查询相关信息的过程:是现代开发中很重要的一环.作为一个web开发人员必须牢牢掌握这项技能,才能尽情得在js中驰骋. 1.创建正则表达式: 正则表达式(regular exp ...
- 使用ArcGIS Chef Cookbook轻松搞掂WebGIS平台部署
1.安装Chef Client v12版本. 2.复制arcgis cookbook资源到Chef安装目录. 3.考虑到一般部署的服务器环境无法连接互联网,所以需要事先部署ArcGIS Cookboo ...
- GIS平台结构设计
前言: WebGIS由于技术发展和功能定位的原因,一般在进行架构设计的时候更多地考虑是否容易实现.用户交互.数据传输方便.渲染效果等方面,对强GIS的应用考虑得少,所以架构上与桌面的GIS平台很不一样 ...
- MySQL中有关char、varchar、int、tinyint、decimal
char.varchar属于字符串类型 1.char属于定长,能确切的知道列值的长度,也就是有多少个字符.当指定char(5)时,表示只能存5个字符,如5个英文‘a’,5个汉字‘我’,5个符号‘&am ...
- IDEA创建maven项目时,maven太慢-archetypeCatalog=internal
创建项目时候加上archetypeCatalog=internal 参数, archetypeCatalog表示插件使用的archetype元数 据,不加这个参数时默认为remote,local,即中 ...
- 使用 docker-machine 管理 Azure 容器虚拟机
安装 docker-machine 请参见该链接(https://docs.docker.com/machine/install-machine "https://docs.docker.c ...
- [NCH 1, 3]
Preview: 1. Implement strStr() O(m*n): class Solution { public: int strStr(string haystack,string ne ...
- yum 安装 lnmp
一. 系统 更新 yum -y update 二. 安装nginx 创建文件 vim /etc/yum.repos.d/nginx.repo 文件内容,这配置是安装最新的稳定版1.8 [nginx] ...