题目链接

https://www.lydsy.com/JudgeOnline/problem.php?id=3174

题解

其实此题并不需要那么多YY的部分。

我们考虑若干个小矮人逃出的顺序。若跳出的 \(k\) 个小矮人依次为 \(p_1, p_2, \cdots , p_k\),那么我们一定可以将他们排序,使得对于任意的 \(i < j\) 满足 \(a_i + b_i < a_j + b_j\) 且按照该顺序依然能保证 \(k\) 个小矮人全部逃出。

证明如下:

若对于任意 \(i, j\),有 \(a_i + b_i < a_j + b_j\),且 \(j\) 比 \(i\) 先逃出,那么设 \(i\) 后面所有人的高度贡献为 \(s_1\),\(i\) 与 \(j\) 之间的人的高度贡献为 \(s_2\),\(h\) 为洞深,可得:

\[a_i + a_j +b_j \geq h - s_1 - s_2 \tag{1}$$ $$a_i + b_i \geq h - s_1 \tag{2}
\]

通过 \((2)\),我们可以推得:$$a_j + a_i + b_i \geq h - s_1 - s_2 \tag{3}$$

通过 \((2)\) 以及 \(a_i + b_i < a_j + b_j\),我们可以推得:$$a_j + b_j \geq h - s_1 \tag{4}$$

由 \((3), (4)\) 可以得出:\(i\) 比 \(j\) 先逃出依然是合法的。

这样,我们就证明了排序的正确性,那么就可以先排序再 dp 了。一个比较显然的状态是,我们设 \(f_{i, j}\) 表示考虑完排序后的前 \(i\) 个人,且已经逃走的人的 \(\sum a_k\) 的值为 \(j\) 时,最多能逃走多少人。不过由于 \(\sum a_k\) 可能很大,这样定义状态并不可行,因此我们需要把状态的第二维与状态本身的意义交换一下:设 \(f_{i, j}\) 表示考虑完排序后的前 \(i\) 个人,且已经逃走了 \(j\) 个人,这 \(j\) 个人的 \(\sum a_k\) 的最小值。这样,我们就能在 \(O(n^2)\) 的时间内完成这个 dp 了。

代码

#include<bits/stdc++.h>

using namespace std;

#define X first
#define Y second
#define mp make_pair
#define pb push_back
#define debug(...) fprintf(stderr, __VA_ARGS__) typedef long long ll;
typedef long double ld;
typedef unsigned int uint;
typedef pair<int, int> pii;
typedef unsigned long long ull; template<typename T> inline void read(T& x) {
char c = getchar();
bool f = false;
for (x = 0; !isdigit(c); c = getchar()) {
if (c == '-') {
f = true;
}
}
for (; isdigit(c); c = getchar()) {
x = x * 10 + c - '0';
}
if (f) {
x = -x;
}
} template<typename T, typename... U> inline void read(T& x, U&... y) {
read(x), read(y...);
} template<typename T> inline bool checkMax(T& a, const T& b) {
return a < b ? a = b, true : false;
} template<typename T> inline bool checkMin(T& a, const T& b) {
return a > b ? a = b, true : false;
} const int N = 2e3 + 10, inf = 0x3f3f3f3f; struct State {
int x, y;
State () {}
State (int x, int y): x(x), y(y) {}
bool operator < (const State& a) const {
return x + y < a.x + a.y;
}
} s[N]; int n, f[N][N], h; int main() {
read(n);
int sa = 0;
for (register int i = 1; i <= n; ++i) {
read(s[i].x, s[i].y), sa += s[i].x;
}
sort(s + 1, s + 1 + n);
read(h);
memset(f, 0x3f, sizeof f);
f[0][0] = 0;
for (register int i = 1; i <= n; ++i) {
for (register int j = 0; j <= i; ++j) {
f[i][j] = f[i - 1][j];
}
for (register int j = 1; j <= i; ++j) {
if (sa - f[i - 1][j - 1] + s[i].y >= h) {
checkMin(f[i][j], f[i - 1][j - 1] + s[i].x);
}
}
}
int ans = 0;
for (register int i = 1; i <= n; ++i) {
if (f[n][i] < inf) {
ans = i;
}
}
printf("%d\n", ans);
return 0;
}

BZOJ3174. [TJOI2013]拯救小矮人(dp)的更多相关文章

  1. BZOJ3174:[TJOI2013]拯救小矮人(DP)

    Description 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个小矮人, ...

  2. BZOJ3174 Tjoi2013 拯救小矮人(贪心+DP)

    传送门 Description 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个 ...

  3. bzoj3174 [Tjoi2013]拯救小矮人

    Description 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个小矮人, ...

  4. BZOJ3174 TJOI2013 拯救小矮人 贪心、DP

    传送门 原问题等价于:先给\(n\)个人排好顺序.叠在一起,然后从顶往底能走即走,问最多能走多少人 注意到一个问题:如果存在两个人\(i,j\)满足\(a_i + b_i < a_j + b_j ...

  5. bzoj千题计划208:bzoj3174: [Tjoi2013]拯救小矮人

    http://www.lydsy.com/JudgeOnline/problem.php?id=3174 按a+b从小到大排序,a+b小的在上面,先考虑让它逃出去 正确性不会证 感性理解一下,最后一个 ...

  6. 【BZOJ-3174】拯救小矮人 贪心 + DP

    3174: [Tjoi2013]拯救小矮人 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 686  Solved: 357[Submit][Status ...

  7. BZOJ_3174_[Tjoi2013]拯救小矮人_贪心+DP

    BZOJ_3174_[Tjoi2013]拯救小矮人_贪心+DP Description 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀 ...

  8. 【BZOJ3174】[TJOI2013]拯救小矮人(贪心,动态规划)

    [BZOJ3174][TJOI2013]拯救小矮人(贪心,动态规划) 题面 BZOJ 洛谷 题解 我们定义一个小矮人的\(A_i+B_i\)为它的逃跑能力. 我们发现,如果有两个小矮人\(x,y\), ...

  9. 贪心+DP【洛谷P4823】 [TJOI2013]拯救小矮人

    P4823 [TJOI2013]拯救小矮人 题目描述 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以 ...

随机推荐

  1. SpringBoot接口返回去掉空字段

    返回的接口中存在值为null或者空的字段过滤掉 @Configuration public class JacksonConfig { @Bean @Primary @ConditionalOnMis ...

  2. linux(Centos系统)部署项目(vue+nginx+tomcat)

    条件,在服务器安装好tomcat,nginx; 安装nginx命令:# yum install nginx 启动Nginx命令:# systemctl start nginx.service 给权限 ...

  3. AFSoundManager

    iOS audio playing (both local and streaming) and recording made easy through a complete and block-dr ...

  4. Project Euler:Problem 86 Cuboid route

    A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the o ...

  5. ora.ctssd OBSERVER

    [grid@ydb1 ~]$ crsctl status res -t -init    ora.ctssd      1        ONLINE  ONLINE       ydb1       ...

  6. 11JavaScript事件

    JavaScript 事件 HTML 事件是发生在 HTML 元素上的事情. 当在 HTML 页面中使用 JavaScript 时, JavaScript 可以触发这些事件. 1.HTML 事件 HT ...

  7. 延迟加载图片控件--echo.js

    echo.js的github地址:https://github.com/toddmotto/echo   echo是一个独立的JavaScript.轻量级的.延迟图片加载插件,echo压缩后体积不到1 ...

  8. Mac下Anaconda的安装和使用

    前提 在刚接触python的时候我想大多数人都会面临一个问题,我到底是选择2还是3,因为现在网上好多的资料和视频项目中都还是用的2,我们跟着学习的时候肯定也是首先从2开始学的,但是我们心里肯定也担心学 ...

  9. 大数据:Map终结和Spill文件合并

    当Mapper没有数据输入,mapper.run中的while循环会调用context.nextKeyValue就返回false,于是便返回到runNewMapper中,在这里程序会关闭输入通道和输出 ...

  10. Python安装tesserocr遇到的各种问题及解决办法

    Tesseract的安装及配置 在Python爬虫过程中,难免遇到各种各样的验证码问题,最简单的就是​这种验证码了,那么在遇到验证码的时候该怎么办呢?我们就需要OCR技术了,OCR-即Optical ...