http://acm.hdu.edu.cn/showproblem.php?pid=2669
#include <iostream>
using namespace std;

int gcd(int a, int b, int &x, int &y) {
    ) {
        x = , y = ;
        return a;
    }
    int q = gcd(b, a%b, y, x);
    y -= a / b * x;
    return q;
}

int main() {
    int a, b;
    while (scanf("%d%d", &a, &b) != EOF) {
        int x, y;
        )
            cout << "sorry" << endl;
        else {
            ) {
                x += b; y -= a;
            }
            cout << x << " " << y << endl;
        }
    }
    ;
}

这里的x2,y2是递归返回阶段,上一层的y和x,所以代码中的是y-=a/b*x。以21/8为示例,返回阶段递归示意图。

题目要求X必需为非负数,最后这个是很容易忽略掉的,很好看懂,但是写题目的时候没有想到可以这样写。


数论——扩展的欧几里德算法 - HDU2669的更多相关文章

  1. ACM数论之旅4---扩展欧几里德算法(欧几里德(・∀・)?是谁?)

    为什么老是碰上 扩展欧几里德算法 ( •̀∀•́ )最讨厌数论了 看来是时候学一学了 度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相 ...

  2. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  3. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

  4. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  5. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

  6. poj1061-青蛙的约会(扩展欧几里德算法)

    一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...

  7. HDU 1576 A/B 扩展欧几里德算法

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  8. 欧几里德算法及其扩展(推导&&模板)

    有关欧几里德算法整理: 1.一些相关概念: <1>.整除性与约数: ①一个整数可以被另外一个整数整除即为d|a(表示d整除a,通俗的说是a可以被d整除),其含义也可以说成,存在某个整数k, ...

  9. ACM_扩展欧几里德算法

    <pre name="code" class="cpp">/* 扩展欧几里德算法 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表 ...

随机推荐

  1. 利用PHP的debug_backtrace函数,实现PHP文件权限管理、动态加载

    简述 可能大家都知道,php中有一个函数叫debug_backtrace,它可以回溯跟踪函数的调用信息,可以说是一个调试利器. 好,来复习一下 01 one(); 02 03 function one ...

  2. 【SSH网上商城项目实战16】Hibernate的二级缓存处理首页的热门显示

    转自:https://blog.csdn.net/eson_15/article/details/51405911 网上商城首页都有热门商品,那么这些商品的点击率是很高的,当用户点击某个热门商品后需要 ...

  3. ARP原理和欺骗

    ARP--在TCP/IP协议栈中,最不安全的协议莫过于ARP了,我们经常听到的网络扫描,内网***,流量欺骗等等,他们基本上都与ARP有关系,甚至可以说,他们的底层都是基于ARP实现的.但是ARP的是 ...

  4. MySQL B+树索引和哈希索引的区别(转 JD二面)

    导读 在MySQL里常用的索引数据结构有B+树索引和哈希索引两种,我们来看下这两种索引数据结构的区别及其不同的应用建议. 二者区别 备注:先说下,在MySQL文档里,实际上是把B+树索引写成了BTRE ...

  5. C#学习笔记(基础知识回顾)之值传递和引用传递

    一:要了解值传递和引用传递,先要知道这两种类型含义,可以参考上一篇 C#学习笔记(基础知识回顾)之值类型和引用类型 二:给方法传递参数分为值传递和引用传递. 2.1在变量通过引用传递给方法时,被调用的 ...

  6. python中静态方法(@staticmethod)和类方法(@classmethod)的区别

    一般来说,要使用某个类的方法,需要先实例化一个对象再调用方法. 而使用@staticmethod或@classmethod,就可以不需要实例化,直接类名.方法名()来调用. 这有利于组织代码,把某些应 ...

  7. Liunx一些命令

    1.设置管理员的密码:sudo passwd root2.获取管理员权限su root3.查看IP地址sudo ifconfig -a4.创建一个文件sudo touch test.txt5.创建一个 ...

  8. HTTP协议笔记整理

    有人说过,精通HTTP协议能赢过95%的前端工程师,所以我毅然的踏上这条路,哈哈哈,接下来把自己的学习笔记整理出来. 我会从比较底层的模型开始: 1.网络的五层模型 2.TCP/IP协议 3.HTTP ...

  9. <Android 应用 之路> MPAndroidChart~BubbleChart(气泡图) and RadarChart(雷达图)

    简介 MPAndroidChart是PhilJay大神给Android开发者带来的福利.MPAndroidChart是一个功能强大并且使用灵活的图表开源库,支持Android和iOS两种,这里我们暂时 ...

  10. 安卓app开发-02-安卓app快速开发

    安卓app开发-02-安卓app快速开发 上一篇介绍了安卓 app 开发的工具和环境配置,本篇不涉及编程技术,适合小团队快速高效开发 APP制作流程 当有一个APP创意,该如何实现呢?是花数十万找AP ...