【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述
今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下:
1 2 3 4 5
2 2 6 4 10
3 6 3 12 15
4 4 12 4 20
看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。
输入
输入的第一行包含两个正整数,分别表示N和M。
输出
输出一个正整数,表示表格中所有数的和mod 20101009的值。
样例输入
4 5
样例输出
122
题解
莫比乌斯反演

预处理mu和mu(i)*i^2及其前缀和。
然后先分块出n/p和m/p,然后再分块求出后面的一串,这样分块套分块时间复杂度是O(n)的,可以解决这道题。
#include <cstdio>
#include <algorithm>
#define N 10000010
#define mod 20101009
using namespace std;
typedef long long ll;
const int n = 10000000;
int mu[N] , prime[N] , tot;
ll sum[N];
bool np[N];
ll s(int x)
{
return (ll)x * (x + 1) / 2 % mod;
}
ll query(int a , int b)
{
int i , last;
ll ans = 0;
for(i = 1 ; i <= a && i <= b ; i = last + 1) last = min(a / (a / i) , b / (b / i)) , ans = (ans + (sum[last] - sum[i - 1] + mod) % mod * s(a / i) % mod * s(b / i) % mod) % mod;
return ans;
}
int main()
{
int i , j , last , a , b;
ll ans = 0 , t;
mu[1] = sum[1] = 1;
for(i = 2 ; i <= n ; i ++ )
{
if(!np[i]) mu[i] = -1 , prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= n ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
break;
}
else mu[i * prime[j]] = -mu[i];
}
sum[i] = (sum[i - 1] + (ll)mu[i] * i * i + mod) % mod;
}
scanf("%d%d" , &a , &b);
for(i = 1 ; i <= a && i <= b ; i = last + 1) last = min(a / (a / i) , b / (b / i)) , ans = (ans + (s(last) - s(i - 1) + mod) % mod * query(a / i , b / i)) % mod;
printf("%lld\n" , ans);
return 0;
}
【bzoj2154】Crash的数字表格 莫比乌斯反演的更多相关文章
- bzoj2154: Crash的数字表格 莫比乌斯反演
题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- 【BZOJ】2154: Crash的数字表格 莫比乌斯反演
[题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
- [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块
考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...
- [bzoj2154]Crash的数字表格(mobius反演)
题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...
- 洛谷 - P1829 - Crash的数字表格 - 莫比乌斯反演
求: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 显然: \(S(n,m)=\sum\limits_{i=1}^{n}\ ...
随机推荐
- 使用Docker镜像部署ELK日志系统
使用Docker部署elasticsearch.logstash.kibana 指定版本:6.7.1 (建议使用同一的版本.屏蔽三个软件间的不兼容性) 下载镜像: docker pull elasti ...
- springboot----logback日志
默认情况下,Spring Boot 配置 ERROR, WARN, INFO 三种日志级别.如果需要 Debug 级别的日志.在 src/main/resources/application.prop ...
- K:线性表的实现—顺序表
所谓顺序表,就是顺序存储的线性表.顺序存储就是用一组地址连续的存储单元依次存放线性表中各个数据元素的存储结构. 线性表中所有数据元素的类型是相同的,所以每一个数据元素在存储器中占用相同的大小的空间.假 ...
- 解决ImmediateDeprecationError 用Python获取Yahoo数据
最近正在看用 python 进行数据处理的内容,很多教程都会用 pandas 去抓取金融数据.我也尝试跑教程上的示例代码以抓取数据. 本文着重介绍遇到的问题以及解决方法. 注:我使用的是 Python ...
- Java 集合:迭代器(Iterator, Iterable)
Iterator接口 public interface Iterator<E> { boolean hasNext(); E next(); void remove(); } 访问元素前需 ...
- BZOJ4568: [Scoi2016]幸运数字(线性基 倍增)
题意 题目链接 Sol 线性基是可以合并的 倍增维护一下 然后就做完了?? 喵喵喵? // luogu-judger-enable-o2 #include<bits/stdc++.h> # ...
- 纯CSS实现3D照片墙
HTML部分: <body> <div class="photo-wrap"> <!-- 舞台 --> <div class=" ...
- RHEL5.X 重启网卡出现./network-functions: line 78: .: ifcfg-eth0: file not found
错误信息: 红帽RHEL5.5系统,重启网卡报错 [root@localhost network-scripts]# service network restart Shutting down int ...
- Google APAC----Africa 2010, Qualification Round(Problem B. Reverse Words)----Perl 解法
原题地址链接:https://code.google.com/codejam/contest/351101/dashboard#s=p1 问题描述: Problem Given a list of s ...
- 图片(imageView)
图片(imageView): 常用属性: android:scaleType(图片显示的格式) android:src(图片源,一般使用的资源) android:scaleType属性的常用取值 0. ...