【NOIP2017】宝藏
题目描述
参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 \(n\) 个深埋在地下的宝藏屋, 也给出了这 \(n\) 个宝藏屋之间可供开发的 \(m\) 条道路和它们的长度。
小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。
小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。
在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。
新开发一条道路的代价是:
\]
\(L\)代表这条道路的长度,\(K\)代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋) 。
请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。
输入输出格式
输入格式
第一行两个用空格分离的正整数 \(n\),\(m\),代表宝藏屋的个数和道路数。
接下来 \(m\) 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏 屋的编号(编号为 \(1\sim n\)),和这条道路的长度 \(v\)。
输出格式
一个正整数,表示最小的总代价。
数据范围
对于 \(20\%\)的数据: 保证输入是一棵树,\(1 \le n \le 8\),\(v \le 500\)且所有的 \(v\) 都相等。
对于 \(40\%\)的数据: \(1 \le n \le 8\),\(0 \le m \le 1000\),\(v \le 5000\)且所有的 \(v\) 都相等。
对于 \(70\%\)的数据: \(1 \le n \le 8\) ,\(0 \le m \le 1000\),\(v \le 5000\)。
对于 \(100\%\)的数据:\(1 \le n \le 12\), \(0 \le m \le 1000\),\(v \le 500000\)。
题解
看题第一眼,Prime,但是发现Prime是错的,Prime的贪心准则不符合这道题,看一眼数据范围\(1 \le n \le 12\),我们可以用状态压缩,\(f[i][j]\)表示当前已探索的点集为i上一层的点集为j,这样的状态转移就十分简单了,但是,如果仅仅是这样,我们是过不了\(100\%\)的数据的,我们来想办法压一下维,我们考虑一下能否把第二维压去,但是,我们会发现,这样的话,对于在集合\(i\)中的点,我们就没有办法直接判定它是在那一层中的。所以我们每次转移时还需要枚举上一层的状态。
代码
#include<bits/stdc++.h>
using namespace std;
long long dist[15][15];
struct Data{
long long sum;
int dist[15];
}dp[1 << 13];
long long inf, ans = 0x7ffffffff;
int main()
{
memset(dist, 0x7f, sizeof(dist));
inf = dist[0][0];
int n, m, x, y;
long long w;
scanf("%d%d", &n, &m);
for(int i = 1; i <= m; ++ i)
{
scanf("%d%d%lld", &x, &y, &w);
dist[x][y] = dist[y][x] = min(dist[x][y], w);
}
int U = (1 << n) - 1;
for(int root = 1; root <= n; ++ root)
{
memset(dp, 0x3f, sizeof(dp));
dp[1 << (root - 1)].dist[root] = 1, dp[1 << (root - 1)].sum = 0;
for(int i = 0; i <= U; ++ i)
{
int S = i | (1 << (root - 1));
for(int u = 1; u <= n; ++ u)
if((S & (1 << (u - 1))))
for(int v = 1; v <= n; ++ v)
if((dist[u][v] != inf) && (!(S & (1 << (v - 1)))))
if(dp[S | (1 << (v - 1))].sum > dp[S].sum + dist[u][v] * ((long long)dp[S].dist[u]))
{
dp[S | (1 << (v - 1))] = dp[S];
dp[S | (1 << (v - 1))].sum = dp[S].sum + dist[u][v] * ((long long)dp[S].dist[u]);
dp[S | (1 << (v - 1))].dist[v] = dp[S | (1 << (v - 1))].dist[u] + 1;
}
}
ans = min(ans, dp[U].sum);
}
printf("%lld\n", ans);
}
【NOIP2017】宝藏的更多相关文章
- 【比赛】NOIP2017 宝藏
这道题考试的时候就骗了部分分.其实一眼看过去,n范围12,就知道是状压,但是不知道怎么状压,想了5分钟想不出来就枪毙了状压,与AC再见了. 现在写的是状压搜索,其实算是哈希搜索,感觉状压DP理解不了啊 ...
- [NOIP2017]宝藏 状压DP
[NOIP2017]宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖 ...
- [NOIP2017]宝藏 子集DP
题面:[NOIP2017]宝藏 题面: 首先我们观察到,如果直接DP,因为每次转移的代价受上一个状态到底选了哪些边的影响,因此无法直接转移. 所以我们考虑分层DP,即每次强制现在加入的点的距离为k(可 ...
- NOIP2017宝藏 [搜索/状压dp]
NOIP2017 宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘 ...
- NOIP2017 - 宝藏
LibreOJ链接 Description 给出一个\(n(n\leq12)\)个点\(m(m\leq1000)\)条边的带权无向图,求该图的一棵生成树,使得其边权×该边距根的深度之和最小. Solu ...
- Luogu 3959 [NOIP2017] 宝藏
NOIP2017最后一道题 挺难想的状压dp. 受到深度的条件限制,所以一般的状态设计带有后效性,这时候考虑把深度作为一维,这样子可以保证所有状态不重复计算一遍. 神仙预处理:先处理出一个点连到一个集 ...
- 洛谷P3959 [NOIP2017]宝藏
[题目描述] 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋,也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但 ...
- NOIP2017 宝藏 题解报告【状压dp】
题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但是 ...
- 【洛谷P3959】[NOIP2017] 宝藏
宝藏 题目链接 首先,打了一个prim,得了45分 #include<iostream> #include<cstring> #include<cstdio> #i ...
- [NOIP2017] 宝藏 【树形DP】【状压DP】
题目分析: 这个做法不是最优的,想找最优解请关闭这篇博客. 首先容易想到用$f[i][S][j]$表示点$i$为根,考虑$S$这些点,$i$的深度为$j$情况的答案. 转移如下: $f[i][S][j ...
随机推荐
- Unity 动态加载资源的方式。
方式 特点 用法 Resource.load 安装包会比较大 在Asset文件夹下建一个Resources命名的文件夹,在打包安装包时会把 Resources文件夹下的所有文件都打包进去,不管 ...
- Sping框架初步使用1
Spring核心容器的理论:Spring核心容器就是一个超大工厂,所有的对象都会被当成Spring容器的核心管理对象,Spring把容器中一切对象统称为Bean(只要是一个Java类,Spring就可 ...
- [javaSE] 进制转换(二进制十进制十六进制八进制)
十进制转二进制,除2运算 十进制6转二进制是 110 (注意从右往左写,使用算式从下往上写) 二进制转十进制,乘2过程 二进制110转十进制 0*2的0次方+1*2的1次方+1*2的2次方=6 对 ...
- Java处理emoji
1.问题产生情况 我遇到这个问题是做微信开发的时候有些有用的头像用了微信的emoji表情,然而我的mysql数据库用的编码是utf8_general_ci,就是utf-8编码,结果也就报错误了. 2. ...
- Java基础-基于《Thinking In Java》
摘要 本文是对一些java基础知识的整理,把之前印象笔记里面的全部慢慢搬到这个blog来 为了方便就按照<Thinking In Java>的目录来编辑. 这里面的内容均为面试题相关,可能 ...
- php BC 高精确度函数库
bcadd: 将二个高精确度数字相加. bccomp: 比较二个高精确度数字. bcdiv: 将二个高精确度数字相除. bcmod: 取得高精确度数字的余数. bcmul: 将二个高精确度数字相乘. ...
- 转:使用VS Code断点调试PHP
使用VS Code断点调试PHP vs code 使用一款杰出的轻量级代码编辑器,其中的插件工具不胜枚举而且还在不断增加.使用 vs code 调试 PHP 代码更是方便简洁,下面我们来一起看一下. ...
- 将本地项目放到GitHub上托管并展示
忽然知道自己写的项目效果可以放到网上让别人看到之后,就已经迫不及待了.不墨迹,先去了解GitHub得知,它很强(牛逼),我理解的是这是一个托管平台,可以把自己本地的项目通过git放到上面,你需要新建一 ...
- 状态开关(ToggleButton)
状态开关(ToggleButton): 常用属性:isChecked(是否被选中,如true) 监听:1.监听方法:setOnCheckedChangeListener 2.监听器:CompoundB ...
- Spring Cloud中,Eureka常见问题总结
Spring Cloud中,Eureka常见问题总结. 1 eureka.environment: 指定环境 参考文档: 1 eureka.datacenter: 指定数据中心 参考文档: 使用配置项 ...