【acm】杀人游戏(hdu2211)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2211
杀人游戏
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3624 Accepted Submission(s): 1182
10 3
解法一:插数法(来源:http://www.cnblogs.com/yuyixingkong/p/3254566.html)
#include<stdio.h>
int main()
{
__int64 t,n,k,count,luck,s,p,i;
scanf("%I64d",&t);
while(t--)
{
scanf("%I64d%I64d",&n,&k);
p=k-;//插入周期eg:k=3,那么p=2;两个一插
for(s=k;s<n+1;)//s为标记,来标记luckboy的位置
{
i=(s-)/p;//计算s前面插几个
luck=s;//luck是记录上一个s的值
s=s+i;
}
printf("%I64d\n",luck);
}
return ;
}
以样例代码为例(如下图所示),即参数为10,3.S代表最后一个被杀的人,下面表示如果杀到最后一轮,3号是最后一个被杀掉的。那么倒数第二轮他应该在四号位置,并且倒数第二轮应该比倒数第一轮多一个人。依次类推,倒数第三轮他在五号位置,此时有六个人。需要注意的是S后面的人其实是可有可无的,对结果不影响,观察第三行和第二行,可以得到,输入(5,3)和(6,3)都是一样的结果,结果都是S(5)。第四行就可以得到输入(7,3,)(8,3)(9,3)都是得到S(7)。这样通过下面的流程图可以得到任意(x,3)问题的解。那么怎么得到所有的解呢。

我们可以看到,第三行比第二行新插进来1个数,而第四行比第三行多插2个,这规律就是,对于第x个位置的数,前一轮(即上图的下一行)要比现在的位置靠后 (x-1)/(k-1)个,x-1好理解,k-1怎么理解呢,k是每k个人,杀一个,杀完之后,如果要还原回原来个数的人,那么需要每k-1个人插一个。 所以对于现在第x位置的人,x的前一轮的位置就是 x+(x-1)/(k-1)。
关于x的初值,显然x最小应该等于k,一直增加到等于n,结束。以上图为例,n=10,k=3,x才开始为3,一直增长到10结束,结果为10。
n =10,k=3,a=10。其实当k=3时,n=10,是a=10的下限,我们在图中可以看出来当k=3时,n属于10~13,a=10。
同理,随便输一个数 n=10096,k=28,得到 a =9776。

符合k=28,a =9776,这样的n的范围是[9776,10137].
方法二:递归法
int f(int n,int k)
{
if(n==k) return k;
int t=f(n-n/k,k);
return t+(t-)/(k-);
}
int main()
{
int t,n,k;
scanf("%d",&t);
while(t--) scanf("%d%d",&n,&k),printf("%d\n",f(n,k));
return ;
}
这个比较难理解,需要推导数学公式。
方法三:打表法
#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std; typedef __int64 LL;
LL INF=; LL save[][]; int main()
{
LL ans,b,d,mid;
for(LL i=;i<=;i++)
{
ans=i;
for(LL j=;j<;j++)
{
b=ans,d=INF;
while(b<=d)
{
mid=(b+d)/;
if(mid-mid/i == ans)
break;
if(mid-mid/i>ans)
d=mid-;
else b=mid+;
}
if( (mid-)-(mid-)/i==ans ) ans=mid-;
else ans=mid;
save[i][j]=ans;
}
}
int T;
scanf("%d",&T);
int flag,n,k,cnt;
while(T--)
{
scanf("%d%d",&n,&k);
for(int i=;;i++)
{
if(save[k][i]>n&&save[k][i-]<=n)
{
printf("%I64d\n",save[k][i-]);
break;
}
}
}
return ;
}
很暴力,性能远不如前面,但是容易想。
【acm】杀人游戏(hdu2211)的更多相关文章
- 杀人游戏(hdu2211)插入法
杀人游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- hdu2211杀人游戏
Problem Description 不知道你是否玩过杀人游戏,这里的杀人游戏可没有法官,警察之类的人,只有土匪,现在已知有N个土匪站在一排,每个土匪都有一个编号,从1到N,每次杀人时给定一个K值, ...
- 【BZOJ-2438】杀人游戏 Tarjan + 缩点 + 概率
2438: [中山市选2011]杀人游戏 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1638 Solved: 433[Submit][Statu ...
- 丢沙包游戏(或杀人游戏)的C语言实现
丢沙包游戏(或杀人游戏)用C语言实现: 游戏简述: 杀人游戏(或者丢沙包游戏),设定一些人(人数为:num)一起玩游戏,从某个指定的人(设定为:start)开始轮流扔沙包,扔沙包人的下一个人为1,每隔 ...
- 【BZOJ2438】[中山市选]杀人游戏 Tarjan+概率
[中山市选]杀人游戏 Tarjan+概率 题目描述 一位冷血的杀手潜入\(Na\)-\(wiat\),并假装成平民.警察希望能在\(N\)个人里面,查出谁是杀手.警察能够对每一个人进行查证,假如查 ...
- BZOJ 2438:杀人游戏(tarjan+概率)
杀人游戏Description一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个人里面,查出谁是杀手. 警察能够对每一个人进行查证,假如查证的对象是平民,他会告诉警察,他认识的人, ...
- bzoj2438 杀人游戏 Tarjan强联通
[bzoj2438][中山市选2011]杀人游戏 Description 一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个人里面,查出谁是杀手.警察能够对每一个人进行查证,假如查 ...
- BZOJ_2438_[中山市选2011]杀人游戏 _强连通分量
BZOJ_2438_[中山市选2011]杀人游戏 _强连通分量 Description 一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个人里面,查出谁是杀手.警察能够对每一个人 ...
- bzoj2438: [中山市选2011]杀人游戏(强联通+特判)
2438: [中山市选2011]杀人游戏 题目:传送门 简要题意: 给出n个点,m条有向边,进行最少的访问并且可以便利(n-1)个点,求这个方案成功的概率 题解: 一道非常好的题目! 题目要知道最大的 ...
随机推荐
- Rails中在model中获取当前登录用户
应用场景:更新系统操作记录时,记录操作人即当前登录用户 方法一:在线程中添加一个变量 class UsersController < ApplicationController before_a ...
- Java - JavaMail - 利用 JavaMail 发邮件的 小demo
1. 概述 面试的时候, 被问到一些乱七八糟的运维知识 虽然我不是干运维的, 但是最后却告诉我专业知识深度不够, 感觉很难受 又回到了一个烦人的问题 工作没有深度的情况下, 你该如何的提升自己, 并且 ...
- django中models的filter过滤方法
__gt 大于__gte 大于等于 __lt 小于 __lte 小于等于 __in 存在于一个list范围内 __startswith 以...开头 __is ...
- 【leetcode 简单】 第五十二题 有效电话号码
给定一个文本文件 file.txt,请只打印这个文件中的第十行. 示例: 假设 file.txt 有如下内容: Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Li ...
- Linux入门第二天——基本命令入门(下)
一.帮助命令 1.帮助命令:man (是manual手册的缩写,男人无所不能,/笑哭) 更多man用法以及man page的用法,参见:http://www.linuxidc.com/Linux/20 ...
- Two Sum - 新手上路
不是计算机相关专业毕业的,从来没用过leetcode,最近在学习数据结构和算法,用leetcode练练手. 新手上路,代码如有不妥之处,尽管指出来. 今天抽空做的第一个题:Two Sum(最简单的呃呃 ...
- HTTP协议请求信息详解
通常HTTP消息包括客户机向服务器的请求消息和服务器向客户机的响应消息.客户端向服务器发送一个请求,请求头包含请求的方法.URI.协议版本.以及包含请求修饰符.客户信息和内容的类似于MIME的消息结构 ...
- 2.1 Oracle之DML的SQL语句之单表查询以及函数
1.SQL简介 对于不同的数据库来说,SQL语句是相通的,关系型数据库都以SQL语句为操作的标准,只是相应的数据库对应的函数不相同. SQL(Structured Query Language,结构化 ...
- 【ZABBIX】ZABBIX3.2升级3.4
小贴士 1.停止zabbix服务 service zabbix_server stop service zabbix_agentd stop /usr/local/zabbix/sbin/zabbix ...
- Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )
Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...