BZOJ4162:shlw loves matrix II
传送门
利用Cayley-Hamilton定理,用插值法求出特征多项式 \(P(x)\)
然后 \(M^n\equiv M^n(mod~P(x))(mod~P(x))\)
然后就多项式快速幂+取模
最后得到了一个关于 \(M\) 的多项式,代入 \(M^i\) 即可
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod(1e9 + 7);
inline int Pow(ll x, int y) {
register ll ret = 1;
for (; y; y >>= 1, x = x * x % mod)
if (y & 1) ret = ret * x % mod;
return ret;
}
inline void Inc(int &x, int y) {
x = x + y >= mod ? x + y - mod : x + y;
}
inline int Dec(int x, int y) {
return x - y < 0 ? x - y + mod : x - y;
}
int n, m, a[55][55], b[55][55], mt[55][55], tmt[55][55], len, c[55], d[55], p[55], tmp[105], yi[55];
char str[10005];
inline int Gauss() {
register int i, j, k, inv, ans = 1;
for (i = 1; i <= n; ++i) {
for (j = i; j <= n; ++j)
if (b[j][i]) {
if (i != j) swap(b[i], b[j]), ans = mod - ans;
break;
}
for (j = i + 1; j <= n; ++j)
if (b[j][i]) {
inv = (ll)b[j][i] * Pow(b[i][i], mod - 2) % mod;
for (k = i; k <= n; ++k) Inc(b[j][k], mod - (ll)b[i][k] * inv % mod);
}
ans = (ll)ans * b[i][i] % mod;
}
return ans;
}
inline void Mul(int *x, int *y, int *z) {
register int i, j, inv;
memset(tmp, 0, sizeof(tmp));
for (i = 0; i <= n; ++i)
for (j = 0; j <= n; ++j) Inc(tmp[i + j], (ll)x[i] * y[j] % mod);
for (i = m; i >= n; --i) {
inv = (ll)tmp[i] * Pow(p[n], mod - 2);
for (j = 0; j <= n; ++j) Inc(tmp[i - j], mod - (ll)p[n - j] * inv % mod);
}
for (i = 0; i <= n; ++i) z[i] = tmp[i];
}
int main() {
register int i, j, k, l, inv;
scanf(" %s%d", str + 1, &n), len = strlen(str + 1), m = n << 1;
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j) scanf("%d", &a[i][j]);
for (i = 0; i <= n; ++i) {
memset(b, 0, sizeof(b));
for (j = 1; j <= n; ++j)
for (k = 1; k <= n; ++k)
b[j][k] = (j ^ k) ? mod - a[j][k] : Dec(i, a[j][k]);
yi[i] = Gauss();
}
for (i = 0; i <= n; ++i) {
memset(tmp, 0, sizeof(tmp)), tmp[0] = yi[i];
for (j = 0; j <= n; ++j)
if (j ^ i) {
for (k = n; k; --k) tmp[k] = Dec(tmp[k - 1], (ll)tmp[k] * j % mod);
tmp[0] = mod - (ll)tmp[0] * j % mod, inv = Pow(Dec(i, j), mod - 2);
for (k = 0; k <= n; ++k) tmp[k] = (ll)tmp[k] * inv % mod;
}
for (j = 0; j <= n; ++j) Inc(p[j], tmp[j]);
}
c[0] = d[1] = 1;
for (i = len; i; --i) {
if (str[i] == '1') Mul(c, d, c);
Mul(d, d, d);
}
memset(b, 0, sizeof(b));
for (i = 1; i <= n; ++i) mt[i][i] = 1;
for (l = 0; l <= n; ++l) {
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
Inc(b[i][j], (ll)c[l] * mt[i][j] % mod);
memset(tmt, 0, sizeof(tmt));
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
for (k = 1; k <= n; ++k)
Inc(tmt[i][k], (ll)mt[i][j] * a[j][k] % mod);
memcpy(mt, tmt, sizeof(mt));
}
for (i = 1; i <= n; ++i, putchar('\n'))
for (j = 1; j <= n; ++j) printf("%d ", b[i][j]);
return 0;
}
BZOJ4162:shlw loves matrix II的更多相关文章
- [bzoj4162]shlw loves matrix II
来自FallDream的博客,未经允许,请勿转载,谢谢 给定矩阵k*k的矩阵M,请计算 M^n,并将其中每一个元素对 1000000007 取模输出. k<=50 n<=2^10000 考 ...
- [BZOJ]4162: shlw loves matrix II
Time Limit: 30 Sec Memory Limit: 128 MB Description 给定矩阵 M,请计算 M^n,并将其中每一个元素对 1000000007 取模输出. Inpu ...
- [bzoj4161]Shlw loves matrix I
来自FallDream的博客,未经允许,请勿转载,谢谢. 给定数列 {hn}前k项,其后每一项满足 hn = a1*h(n-1) + a2*h(n-2) + ... + ak*h(n-k) 其中 a1 ...
- 【leetcode】Spiral Matrix II
Spiral Matrix II Given an integer n, generate a square matrix filled with elements from 1 to n2 in s ...
- 59. Spiral Matrix && Spiral Matrix II
Spiral Matrix Given a matrix of m x n elements (m rows, n columns), return all elements of the matri ...
- Search a 2D Matrix | & II
Search a 2D Matrix II Write an efficient algorithm that searches for a value in an m x n matrix, ret ...
- hdu 5265 pog loves szh II STL
pog loves szh II Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php? ...
- LintCode 38. Search a 2D Matrix II
Write an efficient algorithm that searches for a value in an m x n matrix, return the occurrence of ...
- leetcode 54. Spiral Matrix 、59. Spiral Matrix II
54题是把二维数组安卓螺旋的顺序进行打印,59题是把1到n平方的数字按照螺旋的顺序进行放置 54. Spiral Matrix start表示的是每次一圈的开始,每次开始其实就是从(0,0).(1,1 ...
随机推荐
- Settings app简单学习记录
Settings是android系统设置的入口.主界面由Settings.java以及settings_headers.xml构成. Settings类继承自PreferenceActivity,而P ...
- delphi 10.2 ----简单的叠乘例子
unit Unit11; interface uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, Syste ...
- leetcode-8-字符串转整数 (atoi)
题目描述: 实现 atoi,将字符串转为整数. 在找到第一个非空字符之前,需要移除掉字符串中的空格字符.如果第一个非空字符是正号或负号,选取该符号,并将其与后面尽可能多的连续的数字组合起来,这部分字符 ...
- 说说MySQL权限
前言 今天继续MySQL系列文章,讲讲MySQL权限相关的内容.我们都知道,在写系统的时候,都会有权限相关的服务,以达到权限控制的目的.以最简单的权限菜单为例: 管理员拥有最大权限,可以查看系统下所有 ...
- dubbo和zookeeper的关系
转载前言:网络上很多教程没有描述zookeeper和dubbo到底是什么关系.分别扮演了什么角色等信息,都是说一些似是而非的话,这里终于找到一篇文章,比较生动地描述了注册中心和微服务框架之间的关系,以 ...
- ftpClient.retrieveFileStream导致FTPClient的后面操作失败
问题代码: FTPFile[] fs = ftpClient.listFiles(); for (FTPFile ff : fs) { if (ff.getName().equals(fileName ...
- Sublime Text 3安装插件(Mac 10.12)
1.先安装Package Control,默认这个是没有安装的. 使用[control + -]打开控制台,输入以下代码: import urllib.request,os; pf = 'Packag ...
- (转)Centos7上部署openstack ocata配置详解
原文:http://www.cnblogs.com/yaohong/p/7601470.html 随笔-124 文章-2 评论-82 Centos7上部署openstack ocata配置详解 ...
- Python对象引用和del删除引用
1.首先介绍下python的对象引用 1)Python中不存在传值调用,一切传递的都是对象引用,也可以认为是传址调用.即Python不允许程序员选择采用传值或传引用.Python参数传递采用的是“传对 ...
- Maven项目版本继承 – 我必须指定父版本?
问题描述 我有两个项目:父项目:A,子项目:B 在A /pom.xml中: <groupId>com.dummy.bla</groupId> <artifactId> ...