BZOJ 2007 海拔(平面图最小割转对偶图最短路)
首先注意到,把一个点的海拔定为>1的数是毫无意义的。实际上,可以转化为把这些点的海拔要么定为0,要么定为1.
其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这个点变为周围海拔一样的显然能使结果变优。
于是问题就变成了,这个图的海拔为0的联通块和起点连在一起,海拔为1的联通块和终点连在一起。
此即为经典的最小割。
由于此图为平面图,我们可以使用平面图最小割转对偶图最短路优化算法。
因为这是有向图,因此构建对偶图的时候注意边的方向即可。
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF 1e16
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Edge{int p, next; LL w;}edge[N*];
struct qnode{
int v; LL c;
qnode(int _v=, LL _c=):v(_v),c(_c){}
bool operator<(const qnode&r)const{return c>r.c;}
};
bool vis[N];
int head[N], cnt=;
LL G1[][], G2[][], G3[][], G4[][], dist[N];
priority_queue<qnode>que; void add_edge(int u, int v, LL w){edge[cnt].p=v; edge[cnt].w=w; edge[cnt].next=head[u]; head[u]=cnt++;}
void Dijkstra(int n, int start){
mem(vis,false); FOR(i,,n) dist[i]=INF;
dist[start]=; que.push(qnode(start,));
qnode tmp;
while (!que.empty()) {
tmp=que.top(); que.pop();
int u=tmp.v;
if (vis[u]) continue;
vis[u]=true;
for (int i=head[u]; i; i=edge[i].next) {
int v=edge[i].p; LL cost=edge[i].w;
if (!vis[v]&&dist[v]>dist[u]+cost) dist[v]=dist[u]+cost, que.push(qnode(v,dist[v]));
}
}
}
int main ()
{
int n, s, t, x;
scanf("%d",&n); s=; t=n*n+;
FOR(i,,n) FOR(j,,n) scanf("%lld",&G1[i][j]);
FOR(i,,n) FOR(j,,n) scanf("%lld",&G2[i][j]);
FOR(i,,n) FOR(j,,n) scanf("%lld",&G3[i][j]);
FOR(i,,n) FOR(j,,n) scanf("%lld",&G4[i][j]);
FOR(i,,n) FOR(j,,n) {
if (i==) add_edge(s,i*n+j,G1[i][j]), add_edge(i*n+j,s,G3[i][j]);
else if (i==n) add_edge((i-)*n+j,t,G1[i][j]), add_edge(t,(i-)*n+j,G3[i][j]);
else add_edge((i-)*n+j,i*n+j,G1[i][j]), add_edge(i*n+j,(i-)*n+j,G3[i][j]);
}
FOR(i,,n) FOR(j,,n) {
if (j==) add_edge((i-)*n+j+,t,G2[i][j]), add_edge(t,(i-)*n+j+,G4[i][j]);
else if (j==n) add_edge(s,(i-)*n+j,G2[i][j]), add_edge((i-)*n+j,s,G4[i][j]);
else add_edge((i-)*n+j+,(i-)*n+j,G2[i][j]), add_edge((i-)*n+j,(i-)*n+j+,G4[i][j]);
}
Dijkstra(t,s);
printf("%lld\n",dist[t]);
return ;
}
BZOJ 2007 海拔(平面图最小割转对偶图最短路)的更多相关文章
- bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)
bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路) 题目描述: bzoj luogu 题解时间: 首先考虑海拔待定点的$h$都应该是多少 很明显它们都是$0$或$1$,并且所 ...
- BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路
问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...
- [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】
题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...
- BZOJ1001/LG4001 「ICPC Beijing2006」狼抓兔子 平面图最小割转对偶图最短路
问题描述 BZOJ1001 LG4001 题解 平面图最小割=对偶图最短路 假设起点和终点间有和其他边都不相交的一条虚边. 如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个 ...
- BZOJ2007 [Noi2010]海拔 【平面图最小割转对偶图最短路】
题目链接 BZOJ2007 题解 这是裸题啊,,要是考试真的遇到就好了 明显是最小割,而且是有来回两个方向 那么原图所有向右的边转为对偶图向下的边 向左的边转为向上 向下转为向左 向上转为向右 然后跑 ...
- bzoj1001/luogu4001 狼抓兔子 (最小割/平面图最小割转对偶图最短路)
平面图转对偶图:先在原图中加一个s->t的边,然后对每个面建一个点,对每条分隔两个面的边加一条连接这两个面对应点的边,边权等于原边权. 然后从刚才加的s->t分割出来的两面对应的两个点跑最 ...
- 【Bzoj】1001狼抓兔子(平面图最小割转对偶图最短路)
YEAH 题目链接 终于做对这道题啦 建图的艰辛难以言表- - 顺便说一句我队列转STL啦 狼抓兔子的地图符合平面图定义,于是将该图转成对偶图并求出对偶图的最短路即可. 这篇博客给了我极大的帮助 ...
- bzoj1001平面图最小割转对偶图最短路
https://www.lydsy.com/JudgeOnline/problem.php?id=1001 很明显的求对偶图的最短路即可(由于特判写错了一直wa = = ) //#pragma com ...
- B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij
B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij 题意:城市被东西向和南北向的主干道划分为n×n个区域.城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向 ...
随机推荐
- 20155317 实验二 Java面向对象程序设计
20155317 实验二 Java面向对象程序设计 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉S.O.L.I.D原则 了解设计模式 实验步 ...
- 北京Uber优步司机奖励政策(4月13日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- Scratch3.0设计的插件系统(上篇)
我们每个人在内心深处都怀有一个梦想: 希望创造出一个鲜活的世界,一个宇宙.处在我们生活的中间.被训练为架构师的那些人,拥有这样的渴望: 在某一天,在某一个地方,因为某种原因,创造出了一个不可思议的.美 ...
- C# 合并多个结构相同的DataTable
public DataTable GetAllDataTable(DataSet ds) { DataTable newDataTable = ds.Tables[0].Clone(); //创建新表 ...
- Redis主从复制(Master/Slave) 与哨兵模式
Redis主从复制是什么? 行话:也就是我们所说的主从复制,主机数据更新后根据配置和策略, 自动同步到备机的master/slaver机制,Master以写为主,Slave以读为主 Redis主从复制 ...
- Python爬虫初探 - selenium+beautifulsoup4+chromedriver爬取需要登录的网页信息
目标 之前的自动答复机器人需要从一个内部网页上获取的消息用于回复一些问题,但是没有对应的查询api,于是想到了用脚本模拟浏览器访问网站爬取内容返回给用户.详细介绍了第一次探索python爬虫的坑. 准 ...
- 心中忐忑的跨进了Python的大门!
Hello!大家好,我是Jmmy 作为一个python初学者,抱着一种忐忑的心里走进了这扇让我有些胆怯的大门,因为零基础的缘故让我不得不再三去考虑学这门语言,英语.数学都是个渣的我,也许注定会止步门外 ...
- 牛客网暑期ACM多校训练营(第一场):E-Removal(DP)
链接:E-Removal 题意:给出序列 s1, s2, ..., sn ,1<=s[i]<=10.问删除m个数后,有多少种不同的序列. 题解:定义dp[i][j]代表长度为i,最末尾的数 ...
- List Leaves 树的层序遍历
3-树2 List Leaves (25 分) Given a tree, you are supposed to list all the leaves in the order of top do ...
- Echarts-K线图提示框改头换面
工作: 使用Hbuilder建web工程,加入echarts相关库,根据需要更改K线图及其的提示样式,去除默认提示,使用异步加载echarts的数据,数据格式为json. 需要注意的K线图和5日均线, ...