【uoj#244】[UER #7]短路 CDQ分治+斜率优化dp
题目描述
给出 $(2n+1)\times (2n+1)$ 个点,点 $(i,j)$ 的权值为 $a[max(|i-n-1|,|j-n-1|)]$ ,找一条从 $(1,1)$ 走到 $(2n+1,2n+1)$ 的路径,使得经过的点(包括起点和终点)权值和最小。求这个权值和。
输入
第一行一个正整数 $n$ 。
第二行 $n+1$ 个正整数 $a[0],a[1],…,a[n]$ ,表示从内到外每层的中继器的延时值。
输出
输出一行一个数表示改造后的最短引爆时间。
样例输入
9
9 5 3 7 6 9 1 8 2 4
输出
69
题解
CDQ分治+斜率优化dp
我tm就是个傻逼 = = 明明正解就一个贪心我非要写dp+斜率优化。。。
显然所选路径具有对称性,并且是从左上角走到 $(i,i),i\le n+1$ ,然后沿着这个等距离圈走到 $(2n+2-i,2n+2-i)$ ,再按照同样的路径返回。
设 $f[i]$ 表示到点 $(i+1,i+1)$ 的最小代价。
设 $b[i]=a[n-1-i]$ (为了方便从外层向内层递推)
正解:从 $i$ 到 $i+1$ 显然是通过 $1\sim i$ 中最小的那一层向右平移的,因此 $f[i]=f[i-1]+b[i]+\text{max}_{j=0}^{i-1}b[j]$ ,边界条件 $f[0][0]=b[0]$。
时间复杂度 $O(n)$
我的解法:考虑从 $(j,j)$ 先横着走到 $(j,i)$ 再走到 $(i,i)$ 的过程,那么有:$f[i]=\text{max}_{j=0}^{i-1}(f[j]+\sum\limits_{k=j+1}^ib[k]+(i-j)·b[i])$.
前缀相减得 $f[i]=f[j]+sum[i]-sum[j]+(i-j)·b[j]$ 。
移项得 $j·b[j]+sum[j]-f[j]=i·b[j]+sum[i]-f[i]$ 。
容易发现可以斜率优化,要求截距得最大值,维护上凸壳。
但是这里的横坐标 $b[j]$ 不单调,因此无法使用单调数据结构维护,因此使用CDQ分治。
时间复杂度 $O(n\log n)$
不管了反正过去了。。。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
typedef long long ll;
ll a[N] , sum[N] , f[N];
int id[N] , t[N] , sta[N];
inline ll y(int i) {return a[i] * i + sum[i] - f[i];}
inline ll x(int i) {return a[i];}
inline long double slop(int a , int b) {return (long double)(y(b) - y(a)) / (x(b) - x(a));}
void solve(int l , int r)
{
if(l == r)
{
id[l] = l;
return;
}
int mid = (l + r) >> 1 , i , j , k;
solve(l , mid);
for(k = 0 , i = l ; i <= mid ; i ++ )
{
while(k && x(sta[k]) == x(id[i])) k -- ;
while(k > 1 && slop(sta[k] , id[i]) <= slop(sta[k - 1] , sta[k])) k -- ;
sta[++k] = id[i];
}
for(j = 1 , i = mid + 1 ; i <= r ; i ++ )
{
while(j < k && slop(sta[j] , sta[j + 1]) >= i) j ++ ;
f[i] = min(f[i] , f[sta[j]] + a[sta[j]] * (i - sta[j]) + sum[i] - sum[sta[j]]);
}
solve(mid + 1 , r);
for(i = j = l , k = mid + 1 ; i <= r ; i ++ )
{
if(k > r || (j <= mid && (x(id[j]) == x(id[k]) ? y(id[j]) < y(id[k]) : x(id[j]) < x(id[k])))) t[i] = id[j ++ ];
else t[i] = id[k ++ ];
}
for(i = l ; i <= r ; i ++ ) id[i] = t[i];
}
int main()
{
int n , i;
ll ans = 1ll << 62;
scanf("%d" , &n);
for(i = n ; ~i ; i -- ) scanf("%lld" , &a[i]) , sum[i] = a[i];
for(i = 1 ; i <= n ; i ++ ) sum[i] += sum[i - 1];
memset(f , 0x3f , sizeof(f));
f[0] = a[0] , solve(0 , n);
for(i = 0 ; i <= n ; i ++ )
ans = min(ans , 2 * f[i] + (4 * (n - i) - 1) * a[i]);
printf("%lld\n" , ans);
return 0;
}
【uoj#244】[UER #7]短路 CDQ分治+斜率优化dp的更多相关文章
- BZOJ1492:[NOI2007]货币兑换 (CDQ分治+斜率优化DP | splay动态维护凸包)
BZOJ1492:[NOI2007]货币兑换 题目传送门 [问题描述] 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和B纪念券(以下简称B券).每个持有金券的 ...
- BZOJ 3963: [WF2011]MachineWorks [CDQ分治 斜率优化DP]
传送门 当然了WF的题uva hdu上也有 你的公司获得了一个厂房N天的使用权和一笔启动资金,你打算在这N天里租借机器进行生产来获得收益.可以租借的机器有M台.每台机器有四个参数D,P,R,G.你可以 ...
- BZOJ 1492: [NOI2007]货币兑换Cash [CDQ分治 斜率优化DP]
传送门 题意:不想写... 扔链接就跑 好吧我回来了 首先发现每次兑换一定是全部兑换,因为你兑换说明有利可图,是为了后面的某一天两种卷的汇率差别明显而兑换 那么一定拿全利啊,一定比多天的组合好 $f[ ...
- bzoj1492[NOI2007]货币兑换Cash cdq分治+斜率优化dp
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 5541 Solved: 2228[Submit][Sta ...
- bzoj3672/luogu2305 购票 (运用点分治思想的树上cdq分治+斜率优化dp)
我们都做过一道题(?)货币兑换,是用cdq分治来解决不单调的斜率优化 现在它放到了树上.. 总之先写下来dp方程,$f[i]=min\{f[j]+(dis[i]-dis[j])*p[i]+q[i]\} ...
- BZOJ 3963 HDU3842 [WF2011]MachineWorks cdq分治 斜率优化 dp
http://acm.hdu.edu.cn/showproblem.php?pid=3842 写的check函数里写的<但是应该是<=,调了一下午,我是个zz. 就是普通的斜率优化因为有两 ...
- bzoj3963[WF2011]MachineWorks cdq分治+斜率优化dp
3963: [WF2011]MachineWorks Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 270 Solved: 80[Submit][S ...
- [BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化)
[BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化) 题面 分析 dp方程推导 显然,必然存在一种最优的买卖方案满足:每次买进操作使用完所有的人民币:每次卖出操作卖出所有 ...
- BZOJ4700 适者(贪心+cdq分治+斜率优化)
首先考虑怎么安排攻击顺序.显然如果攻击了某台兵器就应该一直连续攻击直到将其破坏,破坏所需时间可以直接算出来,设其为b.假设确定了某个破坏顺序,如果交换相邻两个兵器,显然不会对其他兵器造成影响,两种顺序 ...
随机推荐
- win10 64位redis的安装和测试
步骤记录: 1.官网没有redis64位的版本,在git开源项目上找到64位的可用版本 https://www.cnblogs.com/tommy-huang/p/6093813.html 这里有下载 ...
- Sqlite数据多表联合update
其实在Mysql中,多表联合update不是什么难事. 语法: 1 UPDATE table_references SET col_name1=expr1 [, col_name2=expr2 ... ...
- linux中生成考核用的NTFS文件系统结构样例
实验NTFS-1说明:NTFS-1.img是一个包含NTFS文件系统的磁盘镜像,请使用winhex手工方式读出这个文件系统内的指定文件,并回答其md5 HASH值.要求: 1.利用WINHEX手工方式 ...
- selenium自动化之元素定位方法
在使用selenium webdriver进行元素定位时,有8种基本元素定位方法(注意:并非只有8种,总共来说,有16种). 分别介绍如下: 1.name定位 (注意:必须确保name属性值在当前ht ...
- 关于scrum敏捷测试
关于scrum的一些定义 敏捷软件开发方法是一种把新增功能通过较小的循环逐步迭代添加到项目中(的项目管理方法),工作是由自我组织的团队以高效合作的方式拥抱和适应变化来保证客户需求被真正满足的方式来完成 ...
- android 签名相关
查看keystorekeytool -list -v -keystore debug.keystoreapk签名不带别名 apksigner sign --ks debug.keystore test ...
- datax 执行流程分析
https://www.jianshu.com/nb/29319571 https://www.jianshu.com/p/b10fbdee7e56
- 1.5 JAVA的高并发编程
一.多线程的基本知识 1.1进程与线程的介绍(上个博客1.4中已经详细介绍进程和线程) 程序运行时在内存中分配自己独立的运行空间,就是进程 线程:它是位于进程中,负责当前进程中的某个具备独立运行资格的 ...
- jQuery 判断浏览器
jQuery 浏览器判断,jQuery提供了一个 jQuery.browser 方法 来判断浏览器 可用值: safari opera msie mozilla 例如:if($.brows ...
- [咸恩静][Coffee House]
歌词来源:http://music.163.com/#/song?id=5400159 하루의 시작은 향긋한 커피 [ha-lu-e xi-ja-geun hyang-geu-Tan Keo-Pi] ...