POJ3233:Matrix Power Series(矩阵快速幂+二分)
http://poj.org/problem?id=3233
题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。
这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有:
A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。
代码如下:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <queue>
using namespace std; struct matrix
{
int a[][];
} init,res;
int n,k,mod;
matrix Mult(matrix x,matrix y)
{
matrix tmp;
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
{
tmp.a[i][j]=;
for(int k=; k<n; k++)
tmp.a[i][j]=(tmp.a[i][j]+x.a[i][k]*y.a[k][j])%mod;
}
}
return tmp;
}
matrix Pow(matrix x,int k)
{
matrix tmp;
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
tmp.a[i][j]=(i==j);
}
while(k)
{
if(k&)
tmp=Mult(tmp,x);
k>>=;
x=Mult(x,x);
}
return tmp;
}
matrix Add(matrix x,matrix y)
{
matrix tmp;
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
{
tmp.a[i][j]=(x.a[i][j]+y.a[i][j])%mod;
}
}
return tmp;
}
matrix Sum(matrix x,int k)
{
if(k==)
return x;
matrix tmp=Sum(x,k/),y;
if(k&)
{
y=Pow(x,k/+);
tmp=Add(Mult(y,tmp),tmp);
return Add(tmp,y);
}
else
{
y=Pow(x,k/);
return Add(Mult(y,tmp),tmp);
}
}
int main()
{
while(scanf("%d%d%d",&n,&k,&mod)!=EOF)
{
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
{
scanf("%d",&init.a[i][j]);
init.a[i][j]%=mod;
}
}
res=Sum(init,k);
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
{
if(j==) printf("%d",res.a[i][j]);
else printf(" %d",res.a[i][j]);
}
printf("\n");
}
}
return ;
}
其他大神的想法:
题目分析:矩阵快速幂。首先我们知道 A^x 可以用矩阵快速幂求出来。其次可以对k进行二分,每次将规模减半,分k为奇偶两种情况,如当k = 6和k = 7时有:
POJ3233:Matrix Power Series(矩阵快速幂+二分)的更多相关文章
- POJ 3233 Matrix Power Series 矩阵快速幂+二分求和
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...
- POJ3233 Matrix Power Series 矩阵快速幂 矩阵中的矩阵
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 27277 Accepted: ...
- POJ3233:Matrix Power Series(矩阵快速幂+递推式)
传送门 题意 给出n,m,k,求 \[\sum_{i=1}^kA^i\] A是矩阵 分析 我们首先会想到等比公式,然后得到这样一个式子: \[\frac{A^{k+1}-E}{A-E}\] 发现要用矩 ...
- POJ3233 Matrix Power Series(矩阵快速幂+分治)
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. ...
- POJ 3233:Matrix Power Series 矩阵快速幂 乘积
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 18450 Accepted: ...
- POJ 3233 Matrix Power Series 矩阵快速幂
设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...
- POJ3233 Matrix Power Series(快速幂求等比矩阵和)
题面 \(solution:\) 首先,如果题目只要我们求\(A^K\) 那这一题我们可以直接模版矩乘快速幂来做,但是它现在让我们求$\sum_{i=1}^{k}{(A^i)} $ 所以我们思考一下这 ...
- POJ-3233 Matrix Power Series 矩阵A^1+A^2+A^3...求和转化
S(k)=A^1+A^2...+A^k. 保利求解就超时了,我们考虑一下当k为偶数的情况,A^1+A^2+A^3+A^4...+A^k,取其中前一半A^1+A^2...A^k/2,后一半提取公共矩阵A ...
- POJ3233Matrix Power Series(矩阵快速幂)
题意 题目链接 给出$n \times n$的矩阵$A$,求$\sum_{i = 1}^k A^i $,每个元素对$m$取模 Sol 考虑直接分治 当$k$为奇数时 $\sum_{i = 1}^k A ...
随机推荐
- 深入分析JavaWeb Item43 -- Struts2开发入门
一.Struts2概述 1.Struts2是什么? Struts2是一个M(模型-域–范围模型)V(View视图)C(控制器)框架(模型2).框架都是一个半成品. 提高开发效率. Struts1是一个 ...
- mybatis由浅入深day01_3mybatis框架介绍
3 mybatis框架 3.1 mybatis是什么? mybatis是一个持久层的框架,是apache下的顶级项目. mybatis托管到goole code下,再后来托管到github下(http ...
- 如何把he_llo wo_rld 变成 HeLlo WoRld
有人问如何把he_llo wo_rld 变成 HeLlo WoRld,估计应该是一道面试的基础题吧. 思路很多种,就看如何实现 思路一.先根据空格分隔,然后转大写,最后再拼接.代码如下 <?ph ...
- 使用loadrunner进行压力测试遇到的问题总结
本人整理了一个LR使用过程中遇到的各种问题的总结文档,有需要可以加QQ群169974486下载. 一.无法生成虚拟用户,运行报错:CCI compilation error -vuser_init.c ...
- Python 进阶(三)面向对象编程基础
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAkMAAAFGCAIAAADmfgziAAAgAElEQVR4nOx993vT1v7/93/5EEt2Eg
- 查看系统资源使用情况:vmstat
vmstat命令可以动态地查看系统资源的使用情况,如内存/交换分区/CPU的使用情况,通过使用该命令可以判断系统的瓶颈在哪里: [root@localhost ~]$ vmstat 1 5 # 表示每 ...
- 多进程模块:multiprocessing
多进程: (1) 前面我们学习的多线程,其实算不上真正的多线程,即使你开了很多个线程,在同一时间内只能有一个CPU核数来处理一个线程(2) 在 python 中,多进程算得上是真正的多线程,假设你的C ...
- pl/sql编程2-综合
案例1,要求:可以向book表添加书,并通过Java程序调用该过程1.1 创建表 ),publishHosuse )); 1.2 编写过程,无返回值 create or replace procedu ...
- php学习十三:其他关键字
在php中,其实不止在php中,在其他语言中我们也会常常接触到一些关键字,整理了一下php当中的一下关键字,可能有些不全,希望大家指出来,多多交流,一起进步. 1.final 特性:1.使用final ...
- PyQt4单选框QCheckBox
PyQt4中的部件 部件是构建应用程序的基础元素.PyQt4工具包拥有大量的种类繁多的部件.比如:按钮,单选框,滑块,列表框等任何程序员在完成其工作时需要的部件. QCheckBox单选框 单选框具有 ...