题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839

设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i 个,则

\( g(i)=C_{n}^{i}*(2^{2^{n-i}}-1) \)

\( g(i)=\sum\limits_{j=i}^{n}C_{j}^{i}f(j) \)

\( f(i)=\sum\limits_{j=i}^{n}(-1)^{j-i}C_{j}^{i}g(j) \)

以为把 g 写出来后 \( C_{n}^{i}*C_{i}^{j} = C_{n}^{j} \) ,然而其实 \( C_{n}^{i}*C_{i}^{j} = C_{n}^{j}*C_{n-j}^{i-j} \) 。

注意指数取模是 mod-1 。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=1e6+,mod=1e9+;
int n,k,g[N],jc[N],jcn[N];
void upd(int &x){x>=mod?x-=mod:;x<?x+=mod:;}
int pw(int x,int k,int md=mod)
{int ret=;while(k){if(k&)ret=(ll)ret*x%md;x=(ll)x*x%md;k>>=;}return ret;}
void init()
{
jc[]=;for(int i=;i<=n;i++)jc[i]=(ll)jc[i-]*i%mod;
jcn[n]=pw(jc[n],mod-);for(int i=n-;i>=;i--)jcn[i]=(ll)jcn[i+]*(i+)%mod;
}
int C(int n,int m)
{return (ll)jc[n]*jcn[m]%mod*jcn[n-m]%mod;}
int main()
{
scanf("%d%d",&n,&k);
init();
int ans=;
for(int i=k,j=;i<=n;i++,j=-j)
ans=(ans+(ll)j*C(i,k)*C(n,i)%mod*(pw(,pw(,n-i,mod-))-))%mod,upd(ans);
printf("%d\n",ans);
return ;
}

bzoj 2839 集合计数——二项式反演的更多相关文章

  1. BZOJ 2839: 集合计数(二项式反演)

    传送门 解题思路 设\(f(k)\)为交集元素个数为\(k\)的方案数.发现我们并不能直接求出\(f(k)\),就考虑容斥之类的东西,容斥首先要扩大限制,再设\(g(k)\)表示至少有\(k\)个交集 ...

  2. bzoj 2839 集合计数 —— 二项式反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_ ...

  3. BZOJ 2839: 集合计数 解题报告

    BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...

  4. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

  5. Bzoj 2839 集合计数 题解

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 495  Solved: 271[Submit][Status][Discuss] ...

  6. BZOJ2839 集合计数 二项式反演

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2839 题解 二项式反演板子题. 类似于一般的容斥,我们发现恰好 \(k\) 个不怎么好求,但是 ...

  7. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

  8. ●BZOJ 2839 集合计数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...

  9. BZOJ 2839: 集合计数 广义容斥

    在一个 $N$ 个元素集合中的所有子集中选择若干个,且交集大小为 $k$ 的方案数. 按照之前的套路,令 $f[k]$ 表示钦定交集大小为 $k$,其余随便选的方案数. 令 $g[k]$ 表示交集恰好 ...

随机推荐

  1. 微信小程序:本地资源图片无法通过 WXSS 获取,可以使用网络图片或者 base64或者使用image标签

    微信小程序:本地资源图片无法通过 WXSS 获取,可以使用网络图片或者 base64或者使用image标签 一.问题 报错信息: VM696:2 pages/user/user.wxss 中的本地资源 ...

  2. Linux内核分析04

    扒开系统调用的三层皮(上) 一,用户态.内核态和中断 用户态.内核态和中断的处理过程 用户态和内核态的区分 内核态:代码可以执行特权指令,访问任意的物理地址,CPU的这种执行级别就对应着~ 相对的用户 ...

  3. 20155201 2016-2017-2 《Java程序设计》第一周学习总结

    20155201 2016-2017-2 <Java程序设计>第一周学习总结 教材学习内容总结 每一章的问题: 第一章 Java ME都有哪些成功的平台? 第二章 哪些情况可以使用impo ...

  4. 从0开始学习 GITHUB 系列之「GITHUB 常见的几种操作」【转】

    本文转载自:http://stormzhang.com/github/2016/09/21/learn-github-from-zero8/ 版权声明:本文为 stormzhang 原创文章,可以随意 ...

  5. Git-远程仓库【转】

    本文转载自:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 远程仓库 到目前为止, ...

  6. asp.net web api的源码

    从安装的NuGet packages逆向找回去 <package id="Microsoft.AspNet.WebApi.Core" version="5.2.7& ...

  7. 【P4语言学习】Parser解析器

    参考文章:王垠:谈谈Parser 簡單介紹 P4 語言(一)- Parser 什么是Parser 传统的parser,一般出现在编译器和编译原理课程中,援引<谈谈Parser>的定义: 首 ...

  8. 路由器实操 能够登陆QQ 收发信息正常 但游览器无法连接网页

    这种情况下,网络是没有问题的. ping www.baidu.com 失败,但是能上QQ说明网络没有问题:这一般是域名解析DNS的问题. 游览器登陆192.168.1.1.输入用户密码,均为admin ...

  9. 依据分辨率区分手机、平板、pc

    /*手机*/ @media screen and (max-width:600px){ #header,#content,#footer{width:400px;} .right,.center{ma ...

  10. python 正则表达式详解

    正则表达式是一个很强大的字符串处理工具,几乎任何关于字符串的操作都可以使用正则表达式来完成,作为一个爬虫工作者,每天和字符串打交道,正则表达式更是不可或缺的技能,正则表达式的在不同的语言中使用方式可能 ...