bzoj 2839 集合计数——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839
设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i 个,则
\( g(i)=C_{n}^{i}*(2^{2^{n-i}}-1) \)
\( g(i)=\sum\limits_{j=i}^{n}C_{j}^{i}f(j) \)
\( f(i)=\sum\limits_{j=i}^{n}(-1)^{j-i}C_{j}^{i}g(j) \)
以为把 g 写出来后 \( C_{n}^{i}*C_{i}^{j} = C_{n}^{j} \) ,然而其实 \( C_{n}^{i}*C_{i}^{j} = C_{n}^{j}*C_{n-j}^{i-j} \) 。
注意指数取模是 mod-1 。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=1e6+,mod=1e9+;
int n,k,g[N],jc[N],jcn[N];
void upd(int &x){x>=mod?x-=mod:;x<?x+=mod:;}
int pw(int x,int k,int md=mod)
{int ret=;while(k){if(k&)ret=(ll)ret*x%md;x=(ll)x*x%md;k>>=;}return ret;}
void init()
{
jc[]=;for(int i=;i<=n;i++)jc[i]=(ll)jc[i-]*i%mod;
jcn[n]=pw(jc[n],mod-);for(int i=n-;i>=;i--)jcn[i]=(ll)jcn[i+]*(i+)%mod;
}
int C(int n,int m)
{return (ll)jc[n]*jcn[m]%mod*jcn[n-m]%mod;}
int main()
{
scanf("%d%d",&n,&k);
init();
int ans=;
for(int i=k,j=;i<=n;i++,j=-j)
ans=(ans+(ll)j*C(i,k)*C(n,i)%mod*(pw(,pw(,n-i,mod-))-))%mod,upd(ans);
printf("%d\n",ans);
return ;
}
bzoj 2839 集合计数——二项式反演的更多相关文章
- BZOJ 2839: 集合计数(二项式反演)
传送门 解题思路 设\(f(k)\)为交集元素个数为\(k\)的方案数.发现我们并不能直接求出\(f(k)\),就考虑容斥之类的东西,容斥首先要扩大限制,再设\(g(k)\)表示至少有\(k\)个交集 ...
- bzoj 2839 集合计数 —— 二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_ ...
- BZOJ 2839: 集合计数 解题报告
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...
- BZOJ 2839: 集合计数 [容斥原理 组合]
2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...
- Bzoj 2839 集合计数 题解
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 495 Solved: 271[Submit][Status][Discuss] ...
- BZOJ2839 集合计数 二项式反演
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2839 题解 二项式反演板子题. 类似于一般的容斥,我们发现恰好 \(k\) 个不怎么好求,但是 ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- ●BZOJ 2839 集合计数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...
- BZOJ 2839: 集合计数 广义容斥
在一个 $N$ 个元素集合中的所有子集中选择若干个,且交集大小为 $k$ 的方案数. 按照之前的套路,令 $f[k]$ 表示钦定交集大小为 $k$,其余随便选的方案数. 令 $g[k]$ 表示交集恰好 ...
随机推荐
- Java编程学习之JDBC连接MySQL
JDBC连接MySQL 一.对JDBC连接数据库的步骤1.加载数据库驱动//加载驱动Class.forName(driverClass)-------------------------------- ...
- LA 3938 动态最大连续和(线段树)
https://vjudge.net/problem/UVALive-3938 题意:给出一个长度为n的整数序列D,你的任务是对m个询问作出回答.对于询问(a,b),需要找到两个下标x和y,使得a≤x ...
- UVa 11021 麻球繁衍
https://vjudge.net/problem/UVA-11021 题意:有k只麻球,每只活一天就会死亡,临死之前可能会生出一些新的麻球.具体来说,生i个麻球的概率为Pi.给定m,求m天后所有麻 ...
- MySQL 5.7.17 Windows安装和启动
1.在官网http://dev.mysql.com/downloads/下载 MySQL Community Server 2.解压后是这个样子(5.7.18解压后没有my-default.ini文件 ...
- SQL——DDL简单语句
基于MySQL的: status 命令查看MySQL当前信息 show databases; 命令列出所有数据库模式 use test; use命令切换到指定数据库模式 show tables; 列出 ...
- 前端框架MVVM是什么(整理)
前端框架MVVM是什么(整理) 一.总结 一句话总结:vm层(视图模型层)通过接口从后台m层(model层)请求数据,vm层继而和v(view层)实现数据的双向绑定. 1.我大前端应该不应该做复杂的数 ...
- node+websocket创建简易聊天室
关于websocket的介绍太多,在这就不一一介绍了,本文主要实现通过websocket创建一个简易聊天室,就是90年代那种聊天室 服务端 1.安装ws模块,uuid模块,ws是websocket模块 ...
- 直方图及low_value、high_value
直方图 Histogram是一种特殊的列统计信息,详细描述了目标列的数据分布情况.存储在数据字典基表 histogram$; 专门为了准确评估分布不均匀的目标列的可选择率.结果集的cardianlit ...
- Leetcode 35
//在数组最后插入INT_MAX是个好方法class Solution { public: int searchInsert(vector<int>& nums, int targ ...
- IOS-常用第三方开源框架介绍
iOS开发-常用第三方开源框架介绍(你了解的ios只是冰山一角) 时间:2015-05-06 16:43:34 阅读:533 评论:0 收藏:0 [点我收藏+] ...