Wannafly挑战赛18 E 极差(线段树、单调栈)
Wannafly挑战赛18 E 极差
题意
给出三个长度为n的正整数序列,一个区间[L,R]的价值定义为:三个序列中,这个区间的极差(最大值与最小值之差)的乘积。
求所有区间的价值之和。答案对\(2^{32}\)取模。
题解
如果只有一个区间,我们可以枚举区间右端点,当右端点向右移动,左端点在[x, r]的一些区间的值会发生改变,可以用单调栈和线段树维护。
至于三个区间,可以用八棵线段树维护选中的某几个区间想乘的值。
代码
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define rep(i, a, b) for(int i=(a); i<(b); i++)
#define sz(a) (int)a.size()
#define efi(a) a[sz(a)-1]
#define ese(a) a[sz(a)-2]
#define de(a) cout << #a << " = " << a << endl
#define dd(a) cout << #a << " = " << a << " "
#define all(a) a.begin(), a.end()
#define endl "\n"
typedef long long ll;
typedef unsigned int uint;
typedef pair<int, int> pii;
typedef vector<int> vi;
//---
const int N = 101010;
const ll P = 1ll<<32;
int n;
uint a[3][N];
struct Seg {
#define ls (rt<<1)
#define rs (ls|1)
static const int N = ::N<<2;
uint sum[8][N], la[3][N];
void build(int l, int r, int rt) {
sum[0][rt] = r-l+1;
if(l==r) return ;
int mid = l+r>>1;
build(l, mid, ls);
build(mid+1, r, rs);
}
inline void gao(int x, uint c, int rt) {
int p = 1<<x;
rep(i, 1, 8) if((i&p)==p) {
sum[i][rt] += sum[i^p][rt] * c;
}
la[x][rt] += c;
}
inline void down(int rt) {
rep(x, 0, 3) if(la[x][rt]) {
gao(x, la[x][rt], ls);
gao(x, la[x][rt], rs);
la[x][rt] = 0;
}
}
inline void up(int rt) {
rep(i, 1, 8) sum[i][rt] = sum[i][ls] + sum[i][rs];
}
void upd(int L, int R, int p, uint c, int l, int r, int rt) {
if(L<=l&&r<=R) {
gao(p, c, rt);
return ;
}
int mid = l+r>>1;
down(rt);
if(L<=mid) upd(L, R, p, c, l, mid, ls);
if(R>=mid+1) upd(L, R, p, c, mid+1, r, rs);
up(rt);
}
uint qry(int L, int R, int l, int r, int rt) {
if(L<=l&&r<=R) return sum[7][rt];
int mid = l+r>>1;
down(rt);
uint ans = 0;
if(L<=mid) ans += qry(L, R, l, mid, ls);
if(R>=mid+1) ans += qry(L, R, mid+1, r, rs);
up(rt);
return ans;
}
}seg;
int pma[3], pmi[3];
int ma[3][N], mi[3][N];
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(0);
///
cin >> n;
///read
rep(i, 0, 3) rep(j, 1, n+1) cin >> a[i][j];
///solve
seg.build(1, n, 1);
uint ans = 0;
rep(j, 1, n+1) {
rep(i, 0, 3) {
while(pmi[i] && a[i][mi[i][pmi[i]]] > a[i][j]) {
seg.upd(mi[i][pmi[i]-1]+1, mi[i][pmi[i]], i, a[i][mi[i][pmi[i]]], 1, n, 1);
--pmi[i];
}
mi[i][++pmi[i]] = j;
seg.upd(mi[i][pmi[i]-1]+1, j, i, -a[i][j], 1, n, 1);
while(pma[i] && a[i][ma[i][pma[i]]] < a[i][j]) {
seg.upd(ma[i][pma[i]-1]+1, ma[i][pma[i]], i, -a[i][ma[i][pma[i]]], 1, n, 1);
--pma[i];
}
ma[i][++pma[i]] = j;
seg.upd(ma[i][pma[i]-1]+1, j, i, a[i][j], 1, n, 1);
}
ans += seg.sum[7][1];
}
cout << ans << endl;
return 0;
}
Wannafly挑战赛18 E 极差(线段树、单调栈)的更多相关文章
- Codeforces 1175F - The Number of Subpermutations(线段树+单调栈+双针/分治+启发式优化)
Codeforces 题面传送门 & 洛谷题面传送门 由于这场的 G 是道毒瘤题,蒟蒻切不动就只好来把这场的 F 水掉了 看到这样的设问没人想到这道题吗?那我就来发篇线段树+单调栈的做法. 首 ...
- Codeforces 781E Andryusha and Nervous Barriers 线段树 单调栈
原文链接https://www.cnblogs.com/zhouzhendong/p/CF781E.html 题目传送门 - CF781E 题意 有一个矩形,宽为 w ,高为 h .一开始会有 w 个 ...
- 洛谷P4425 转盘 [HNOI/AHOI2018] 线段树+单调栈
正解:线段树+单调栈 解题报告: 传送门! 1551又是一道灵巧连题意都麻油看懂的题,,,,所以先解释一下题意好了,,,, 给定一个n元环 可以从0时刻开始从任一位置出发 每次可以选择向前走一步或者在 ...
- 线段树+单调栈+前缀和--2019icpc南昌网络赛I
线段树+单调栈+前缀和--2019icpc南昌网络赛I Alice has a magic array. She suggests that the value of a interval is eq ...
- 牛客多校第四场sequence C (线段树+单调栈)
牛客多校第四场sequence C (线段树+单调栈) 传送门:https://ac.nowcoder.com/acm/contest/884/C 题意: 求一个$\max {1 \leq l \le ...
- BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)
BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...
- [Codeforces1132G]Greedy Subsequences——线段树+单调栈
题目链接: Codeforces1132G 题目大意:给定一个序列$a$,定义它的最长贪心严格上升子序列为$b$满足若$a_{i}$在$b$中则$a_{i}$之后第一个比它大的也在$b$中.给出一个数 ...
- AtCoder Regular Contest 063 F : Snuke’s Coloring 2 (线段树 + 单调栈)
题意 小 \(\mathrm{C}\) 很喜欢二维染色问题,这天他拿来了一个 \(w × h\) 的二维平面 , 初始时均为白色 . 然后他在上面设置了 \(n\) 个关键点 \((X_i , Y_i ...
- cdqz2017-test10-rehearsal(CDQ分治&可持久化线段树&单调栈)
题意: 给出n个三元组 e[i]=(si,ti,wi) 第i个三元组的价值为 Σ w[j] ,j 满足以下4个条件: 1.j<i 2.tj<ti 3.sj<si 4.不存在j< ...
随机推荐
- nginx 反向代理https
nginx 反向代理https 原来我用vertx创建了一个https apiserver,想着用nginx反向代理一下.证书是阿里云上免费一年的. 后来发现nginx要反向代理https自己也必 ...
- 关于Hall定理的学习
基本定义 \(Hall\) 定理是二分图匹配的相关定理 用于判断二分图是否存在完美匹配 存在完美匹配的二分图即满足最大匹配数为 \(min(|X|,|Y|)\) 的二分图,也就是至少有一边的点全部被匹 ...
- JSONP数据调用
json 是一种数据格式 jsonp 是一种数据调用的方式. 什么是JSONP 为了便于客户端使用数据,逐渐形成了一种非正式传输协议,人们把它称作JSONP,该协议的一个要点就是 ...
- 一、hbase单机安装
下文将快速构建并启动单节点hbase,不使用hdfs作为存储,不使用独立的zookeeper hbase官网:http://hbase.apache.org/ 一.JDK环境 hbase需要JDK环境 ...
- ssm项目快速搭建(注解)
dao层配置 dao层配置注意事项: 1.Mapper.xml 文件中的 namespace 与 mapper 接口的类路径相同 2.Mapper.xml 接口方法名和 Mapper.xml 中定义的 ...
- js delete 操作符
delete操作符很陌生,很少会用到,但是既然碰到了,就mark一下: delete 操作符用于删除一个对象的属性: 注意点:只能删除自己的属性,从原型链上继承的属性是无法删除的:
- sql: MySQL and Microsoft SQL Server Stored Procedures IN, OUT using csharp code
MySQL存储过程: #插入一条返回值涂聚文注 DELIMITER $$ DROP PROCEDURE IF EXISTS `geovindu`.`proc_Insert_BookKindOut` $ ...
- css3怎么分清伪类和伪元素
伪类用于向某些选择器添加特殊的效果. 伪元素用于将特殊的效果添加到某些选择器. 伪类有::first-child ,:link:,vistited,:hover,:active,:focus,:lan ...
- 微信小程序-movable-view
<view class="page-body"> <view class="page-section"> <view class= ...
- 【MFC】CHtmlView或WebBrowser禁止脚本错误提示
错误展示: 解决办法: 1.CHtmlView类或子类 CHtmlView::SetSilent(TRUE); 2.IWebBrowser2控件 IWebBrowser2::put_Silent(TR ...