如何通俗理解贝叶斯推断与beta分布?
有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”:
能够说明它两面都是“花”吗?
1 贝叶斯推断
按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是:
但是抛三次实在太少了,完全有可能是运气问题。我们应该怎么办?
托马斯·贝叶斯(1702-1761),18世纪英国数学家,1742年成为英国皇家学会会员。
贝叶斯认为在实验之前,应根据不同的情况对硬币有所假设。不同的假设会得到不同的推断。
比如和滑不溜手的韦小宝玩。韦小宝可能拿出各种做过手脚的硬币,让我们猜不透,只能假设对硬币一无所知。这种假设之下,我们就只能根据实验结果来猜测。
因此,实验结果是“扔三次,三次花”,倾向于认为韦小宝有可能作弊:
大侠陈近南用的可能是公平硬币:
而憨坏的多隆,真的有可能用两面“花”来和你玩:
各种假设称为先验分布,结合刚才“扔三次,三次花”的实验数据,推断出硬币的后验分布,这就是贝叶斯推断:
这里补充一下,可能大家觉得再多抛几次硬币就可以了,何必弄什么贝叶斯推断。不过现实生活中有一些事件不是能够多“抛”几次的,比如地震、彗星撞击地球等等。这里只是借着硬币来讨论问题。
2 分布
那么问题来了,“先验分布”,“后验分布”用数学怎么表示:
对于扔硬币, 分布非常适合用来完成这个任务。
2.1 先验分布
分布简记为(这一节里面的所有细节会在后面给出):
根据 参数的不同,形态各异:
这个特性非常适合用来做先验分布。比如,在韦小宝面前,我们对硬币一无所知。
贝叶斯说一无所知也就是意味着任何概率都是一样的,都是有可能的,所以选用均匀分布(所谓的无信息先验,可以参看这篇文章):
正好就是均匀分布:
正直的陈近南,可能用的是公平硬币,也就是说概率在0、1之间(0表示“字”,1表示“花”), 可以表示这样的分布:
而憨坏的多隆,可能用了两面花,也就是说概率可能集中到1附近, 可以表示这样的分布:
也就是说可以用 分布来模拟各种先验分布:
- 一无所知:
- 公平硬币:
- 两面花:
2.2 后验分布
用 分布来模拟扔硬币的先验分布之后,通过贝叶斯推断,得到的后验分布依然是
分布:
具体到这里:
再具体到韦小宝的情况就是:
其中,用 来表示实验数据,意思是3次花,0次字(
就是2次花,1次字)。
图像上的变化就是:
可以看到,作弊的可能性还是比较大的。
陈近南的情况:
结合实验数据之后,图像的中心从0.5往0.6方向移动了,作弊可能性有所增加,不过总体来看应该还是公平硬币的可能性大。
多隆的情况:
更向1集中,作弊的可能性非常高。
3 代数细节
3.1 贝叶斯推断
贝叶斯推断:
的应用到二项式分布的数学细节如下。假设实验数据 服从二项分布:
上面的式子根据贝叶斯定理(离散贝叶斯可以参看怎样用非数学语言讲解贝叶斯定理(Bayes theorem)?,连续贝叶斯可以参看这里)可以表示为:
其中 为“花”的次数。分母与实验数据无关,可以视作常数:
因此,写成下面这样更容易看清楚重点(其中 表示两者之间成比例):
3.2 分布
长成这个样子:
其中, 为
函数。
随着 的变换,
分布形态各异:
3.3 共轭先验
对于二项式分布,用 分布作为先验分布,通过贝叶斯推断之后,后验分布依然是
分布:
这种特性称为共轭先验。
并且:
关于这点的证明请参看这里,需要***。
文章最新版本在(有可能会有后续更新):如何理解贝叶斯推断,beta分布?
如何通俗理解贝叶斯推断与beta分布?的更多相关文章
- (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...
- 贝叶斯推断之最大后验概率(MAP)
贝叶斯推断之最大后验概率(MAP) 本文详细记录贝叶斯后验概率分布的数学原理,基于贝叶斯后验概率实现一个二分类问题,谈谈我对贝叶斯推断的理解. 1. 二分类问题 给定N个样本的数据集,用\(X\)来表 ...
- 贝叶斯推断 && 概率编程初探
1. 写在之前的话 0x1:贝叶斯推断的思想 我们从一个例子开始我们本文的讨论.小明是一个编程老手,但是依然坚信bug仍有可能在代码中存在.于是,在实现了一段特别难的算法之后,他开始决定先来一个简单的 ...
- 概率编程:《贝叶斯方法概率编程与贝叶斯推断》中文PDF+英文PDF+代码
贝叶斯推理的方法非常自然和极其强大.然而,大多数图书讨论贝叶斯推理,依赖于非常复杂的数学分析和人工的例子,使没有强大数学背景的人无法接触.<贝叶斯方法概率编程与贝叶斯推断>从编程.计算的角 ...
- tf-idf、朴素贝叶斯的短文本分类简述
朴素贝叶斯分类器(Naïve Bayes classifier)是一种相当简单常见但是又相当有效的分类算法,在监督学习领域有着很重要的应用.朴素贝叶斯是建立在“全概率公式”的基础下的,由已知的尽可能多 ...
- LDA概率图模型之贝叶斯理解
贝叶斯.概率分布与机器学习 转自:http://www.cnblogs.com/LeftNotEasy/archive/2010/09/27/1837163.html 本文由LeftNotEasy原 ...
- [机器学习] 分类 --- Naive Bayes(朴素贝叶斯)
Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 ...
- ML(3): 贝叶斯方法
对于分类问题,我们每个人每天都在执行分类操作,只是我们没有意识到罢了.例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女:你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱.那边有个非主流” ...
- 基于贝叶斯网(Bayes Netword)图模型的应用实践初探
1. 贝叶斯网理论部分 笔者在另一篇文章中对贝叶斯网的理论部分进行了总结,在本文中,我们重点关注其在具体场景里的应用. 2. 从概率预测问题说起 0x1:条件概率预测模型之困 我们知道,朴素贝叶斯分类 ...
随机推荐
- zookeeper启动时报错:Error contacting service. It is probably not running问题
查看zookeeper.out发现启动日志报错未找到java路径. 启动日志位于zookeeper-4.0.10/bin目录下 修改/etc/profile中环境变量得以解决.
- FCC Truncate a string 解决方法
三行搞定 function truncate(str, num) { ab = str.length >num?num>3?str.slice(0,num-3)+ "...&qu ...
- 在VSCode使用Markdown绘制UML图
在VSCode使用Markdown绘制UML图 需要插件 Markdown All in One Markdown Preview Enhanced PlantUML markdownlint Mar ...
- [转载]Linux crontab命令解析
名称 : crontab crontab 是用来让使用者在固定时间或固定间隔执行程序之用,换句话说,也就是类似使用者的时程表.-u user 是指设定指定 user 的时程表,这个前提是你必须要有其权 ...
- 19-3-13Python中的函数
def:关键字.定义.声明一个函数. def make():定义函数'make' *注:定义后的函数不调用是不执行的 函数的调用: 函数名+()==函数的调用 def addnum(): a = in ...
- K8s集群安装和检查(经验分享)
一.组件方式检查 1. Master节点: root>> kubectl get cs 2. Node 节点: 无 二.服务方式检查 1. Master 节点: root>> ...
- 【Linux】文件、目录权限及归属
访问权限: 可读(read):允许查看文件内容.显示目录列表 可写(write):允许修改文件内容,允许在目录中新建.移动.删除文件或子目录 可执行(execute):允许运行程序.切换目录 归属: ...
- 撩妹技能 get,教你用 canvas 画一场流星雨
开始 妹子都喜欢流星,如果她说不喜欢,那她一定是一个假妹子. 现在就一起来做一场流星雨,用程序员的野路子浪漫一下. 要画一场流星雨,首先,自然我们要会画一颗流星. 玩过 canvas 的同学,你画圆画 ...
- 用户从地址栏输入url,按下enter键后,直到页面加载完成的这个过程都发生了什么?
流程大概描述一下: 用户将url输入后,服务器接受到请求,然后将这个请求进行处理,然后将处理后的结果返回给浏览器,浏览器将该结果以页面的形式呈现给用户. 详细描述: 1:用户将url(例如www.ba ...
- tp5 接入腾讯对象存储COS
以前写过一个接入阿里的OSS对象存储的,现在又简单写了个 腾讯COS对象存储. 这里只有COS使用方式,如果对接TP上传 可以去参考 :http://www.cnblogs.com/inkwhite/ ...