如何通俗理解贝叶斯推断与beta分布?
有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”:

能够说明它两面都是“花”吗?

1 贝叶斯推断
按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是:
但是抛三次实在太少了,完全有可能是运气问题。我们应该怎么办?

托马斯·贝叶斯(1702-1761),18世纪英国数学家,1742年成为英国皇家学会会员。
贝叶斯认为在实验之前,应根据不同的情况对硬币有所假设。不同的假设会得到不同的推断。
比如和滑不溜手的韦小宝玩。韦小宝可能拿出各种做过手脚的硬币,让我们猜不透,只能假设对硬币一无所知。这种假设之下,我们就只能根据实验结果来猜测。
因此,实验结果是“扔三次,三次花”,倾向于认为韦小宝有可能作弊:

大侠陈近南用的可能是公平硬币:

而憨坏的多隆,真的有可能用两面“花”来和你玩:

各种假设称为先验分布,结合刚才“扔三次,三次花”的实验数据,推断出硬币的后验分布,这就是贝叶斯推断:
这里补充一下,可能大家觉得再多抛几次硬币就可以了,何必弄什么贝叶斯推断。不过现实生活中有一些事件不是能够多“抛”几次的,比如地震、彗星撞击地球等等。这里只是借着硬币来讨论问题。
2 分布
那么问题来了,“先验分布”,“后验分布”用数学怎么表示:
对于扔硬币, 分布非常适合用来完成这个任务。
2.1 先验分布
分布简记为(这一节里面的所有细节会在后面给出):
根据 参数的不同,形态各异:

这个特性非常适合用来做先验分布。比如,在韦小宝面前,我们对硬币一无所知。
贝叶斯说一无所知也就是意味着任何概率都是一样的,都是有可能的,所以选用均匀分布(所谓的无信息先验,可以参看这篇文章):

正好就是均匀分布:

正直的陈近南,可能用的是公平硬币,也就是说概率在0、1之间(0表示“字”,1表示“花”), 可以表示这样的分布:

而憨坏的多隆,可能用了两面花,也就是说概率可能集中到1附近, 可以表示这样的分布:

也就是说可以用 分布来模拟各种先验分布:
- 一无所知:
- 公平硬币:
- 两面花:
2.2 后验分布
用 分布来模拟扔硬币的先验分布之后,通过贝叶斯推断,得到的后验分布依然是
分布:
具体到这里:
再具体到韦小宝的情况就是:
其中,用 来表示实验数据,意思是3次花,0次字(
就是2次花,1次字)。
图像上的变化就是:

可以看到,作弊的可能性还是比较大的。
陈近南的情况:
结合实验数据之后,图像的中心从0.5往0.6方向移动了,作弊可能性有所增加,不过总体来看应该还是公平硬币的可能性大。
多隆的情况:

更向1集中,作弊的可能性非常高。
3 代数细节
3.1 贝叶斯推断
贝叶斯推断:
的应用到二项式分布的数学细节如下。假设实验数据 服从二项分布:
上面的式子根据贝叶斯定理(离散贝叶斯可以参看怎样用非数学语言讲解贝叶斯定理(Bayes theorem)?,连续贝叶斯可以参看这里)可以表示为:
其中 为“花”的次数。分母与实验数据无关,可以视作常数:
因此,写成下面这样更容易看清楚重点(其中 表示两者之间成比例):
3.2 分布
长成这个样子:
其中, 为
函数。
随着 的变换,
分布形态各异:

3.3 共轭先验
对于二项式分布,用 分布作为先验分布,通过贝叶斯推断之后,后验分布依然是
分布:
这种特性称为共轭先验。
并且:
关于这点的证明请参看这里,需要***。
文章最新版本在(有可能会有后续更新):如何理解贝叶斯推断,beta分布?
如何通俗理解贝叶斯推断与beta分布?的更多相关文章
- (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...
- 贝叶斯推断之最大后验概率(MAP)
贝叶斯推断之最大后验概率(MAP) 本文详细记录贝叶斯后验概率分布的数学原理,基于贝叶斯后验概率实现一个二分类问题,谈谈我对贝叶斯推断的理解. 1. 二分类问题 给定N个样本的数据集,用\(X\)来表 ...
- 贝叶斯推断 && 概率编程初探
1. 写在之前的话 0x1:贝叶斯推断的思想 我们从一个例子开始我们本文的讨论.小明是一个编程老手,但是依然坚信bug仍有可能在代码中存在.于是,在实现了一段特别难的算法之后,他开始决定先来一个简单的 ...
- 概率编程:《贝叶斯方法概率编程与贝叶斯推断》中文PDF+英文PDF+代码
贝叶斯推理的方法非常自然和极其强大.然而,大多数图书讨论贝叶斯推理,依赖于非常复杂的数学分析和人工的例子,使没有强大数学背景的人无法接触.<贝叶斯方法概率编程与贝叶斯推断>从编程.计算的角 ...
- tf-idf、朴素贝叶斯的短文本分类简述
朴素贝叶斯分类器(Naïve Bayes classifier)是一种相当简单常见但是又相当有效的分类算法,在监督学习领域有着很重要的应用.朴素贝叶斯是建立在“全概率公式”的基础下的,由已知的尽可能多 ...
- LDA概率图模型之贝叶斯理解
贝叶斯.概率分布与机器学习 转自:http://www.cnblogs.com/LeftNotEasy/archive/2010/09/27/1837163.html 本文由LeftNotEasy原 ...
- [机器学习] 分类 --- Naive Bayes(朴素贝叶斯)
Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 ...
- ML(3): 贝叶斯方法
对于分类问题,我们每个人每天都在执行分类操作,只是我们没有意识到罢了.例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女:你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱.那边有个非主流” ...
- 基于贝叶斯网(Bayes Netword)图模型的应用实践初探
1. 贝叶斯网理论部分 笔者在另一篇文章中对贝叶斯网的理论部分进行了总结,在本文中,我们重点关注其在具体场景里的应用. 2. 从概率预测问题说起 0x1:条件概率预测模型之困 我们知道,朴素贝叶斯分类 ...
随机推荐
- Java面向对象的三个特征
首先,Java面向对象的三大特征: 三大特征: ▪ 封装 ▪ 继承 ▪ 多态 首先面向对象的第一个特性 封装 : 封装:就是把客观事物封装成抽象的类,并且类可以把自己的数据和方法只让可信的类或者对象操 ...
- mina 通讯框架
Apache Mina Server 是一个网络通信应用框架,也就是说,它主要是对基于TCP/IP.UDP/IP协议栈的通信框架(当然,也可以提供JAVA 对象的序列化服务.虚拟机管道通信服务等),M ...
- 【Linux】管理文件系统
文件系统概念: 文件系统是指文件的组织与管理结构,是一个有关于磁盘中各种有用信息的记录——即是保存以下信息的结构记录表 当前所使用磁盘的容量信息 磁盘的可用信息,包括已占用和剩余的空间: 文件与目录的 ...
- Docker安装(yum方式 centos7)
yum install -y yum-utils device-mapper-persistent-data lvm2 yum-config-manager --add-repo http://m ...
- python散记
1.AOP 将不同的类的内部中雷同的代码和重复的功能,提取出来以重用. 装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志.性能测试.事务处理等 2.新式类,经典类 新式类 ...
- Windows常用shell命令
一.Windows的Shell命令又是Windows的CMD命令.而cmd命令又是原来MS-DOS系统保留下来 二.Windows Shell命令是基于配置好的Path环境变量,对Shell命令在Pa ...
- Flume(5)-Ganglia监控
一. 安装Ganglia 1. 安装httpd服务与php sudo yum -y install httpd php 2. 安装其他依赖 sudo yum -y install rrdtool pe ...
- linux-2.6.22.6内核启动分析之Makefile文件
学习目标 分析Makefile文件,了解内核中的哪些文件被编译,如何被编译,连接时顺序如何确定! Linux内核源码中包含很多的Makefile文件,这些Makefile文件又包含其它的一些文件,比如 ...
- Shell学习积累//持续更新
1.until的使用 直到判断条件满足,否则会一直执行,与while使用相反 until [ $command -eq 200 ] do command=`curl -o /dev/null -s - ...
- 大二作业——操作系统实验——C语言用双向链表,模拟实现动态分区式存储管理
实验:动态分区式存储管理 实验内容: 编写程序模拟完成动态分区存储管理方式的内存分配和回收.实验具体包括:首先确定内存空闲分配表:然后采用最佳适应算法完成内存空间的分配和回收:最后编写主函数对所做工作 ...