P3802 小魔女帕琪

题目背景

从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼。

帕琪能熟练使用七种属性(金、木、水、火、土、日、月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从而唱出强力的魔法。比如说为了加强攻击力而将火和木组合,为了掩盖弱点而将火和土组合等等,变化非常丰富。

题目描述

现在帕琪与强大的夜之女王,吸血鬼蕾咪相遇了,夜之女王蕾咪具有非常强大的生命力,普通的魔法难以造成效果,只有终极魔法:帕琪七重奏才能对蕾咪造成伤害。帕琪七重奏的触发条件是:连续释放的7个魔法中,如果魔法的属性各不相同,就能触发一次帕琪七重奏。

现在帕琪有7种属性的能量晶体,分别为\(a_1,a_2,a_3,a_4,a_5,a_6,a_7\)(均为自然数),每次释放魔法时,会随机消耗一个现有的能量晶体,然后释放一个对应属性的魔法。

现在帕琪想知道,她释放出帕琪七重奏的期望次数是多少,可是她并不会算,于是找到了学\(OI\)的你

输入输出格式

输入格式:

一行7个数字,\(a_1,a_2,a_3,a_4,a_5,a_6,a_7\)

输出格式:

一个四舍五入保留3位的浮点数

数据范围:

对于30%的测试点,\(a_1+a_2+a_3+a_4+a_5+a_6+a_7<=10\)

对于100%的测试点,\(a_1+a_2+a_3+a_4+a_5+a_6+a_7<=10^9\)


UDT:2018.9.25

之前写的有不小问题,居然没人提。。

今天被期望虐惨了,去洛谷找了道颜色最低的期望题

然后...不会

好吧,正题...

首先直接考虑对于取的前7个能量晶体

设\(N=\sum_{i=1}^7 a_i\)

考虑前7个一连串取出了\(a_1,a_2,a_3,..a_7\)的概率

为\(\frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6}\)

因为是条件概率,所以样本空间减少了(n-x)

对条件概率:

简单一点的解释是,B在A发生的条件下发生的概率。

举个栗子,掷色子第一次投6概率为1/6,为A事件,第二次投6概率仍为1/6,为B事件。如果把两次投掷产生的一个结果算成一个最终状态,那么连续的状态AB发生的概率为1/36,也即是B在A发生的条件下发生的概率。

然后我们对取出1-7的式子发现,如果我们不按1-7的顺序取,分子分母并没有变化

那么直接按照排列组合,把所有顺序的全部统计

即\(7! \times \frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6}\)

但其实后面每七位对应的答案都是这样,下面讲为什么


在考虑之后怎么取之前,我们先想一个问题。

你班要选择投票一个人,在班花喵面前吃巧克力,然后班主任拿了一个盒盒让你们摸球球,里面有1个红球和29个白球(你班30人),抽到红球的人就有了这个至高无上的权利,一个个的去抽,那么顺序不一样的话,是公平的吗??

当然...是了

第一个人抽中的概率是 \(\frac {1}{30}\)

第二个人抽中的概率是 \(\frac {29}{30} \times \frac {1}{29}\)

第三个人抽中的概率是 \(\frac {29}{30} \times \frac {28}{29} \times \frac {1}{28}\)

...

有了这些我们可以感性理解在这个题中每七位都是一样的统计了

以上只是提供一个感性的类似的说明方法,和下面的并非直接相关


然后我们考虑用类似的方法把它说清楚

如果第一个取出\(a_1\)

我们考虑它取出的合法的第2-8个,就可以再次放招了

概率为

\(\frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6} \times \frac{a_1-1}{N-7}\)

同理组合有\(7!\)种(这\(7!\)是确定了首位而\(2-8\)不定的情况)

如果第一个取\(a_2\)

概率为

\(\frac{a_2}{N} \times \frac{a_1}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6} \times \frac{a_2-1}{N-7}\)

我们把第一个取出的7种可能加在一起

发现末项加起来化简是1

即\(\sum_{i=1}^7 \frac{a_i-1}{N-7}=1\)

于是对第2-8位的贡献化简结果就是\(7! \times \frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6}\)

所以最终答案就是(乘上了\(N-6\)项)

\(7! \times \frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times {a_7}\)


Code:

#include <cstdio>
double a[8],s,ans=1;
int main()
{
for(int i=1;i<=7;i++)
{
scanf("%lf",a+i);
s+=a[i];
}
for(int i=1;i<=6;i++)
ans=ans*a[i]/(s+1-i)*double(i);
ans=ans*a[7]*7.0;
printf("%.3lf\n",ans);
return 0;
}

2018.7.16

洛谷 P3802 小魔女帕琪 解题报告的更多相关文章

  1. 洛谷P3802 小魔女帕琪

    P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...

  2. 洛谷 P3802 小魔女帕琪

    传送门 题目大意:7个东西,每个有ai个,只有选7次 把7个东西都选到了才行. 题解:7!排列数*每次选择的概率 代码: #include<iostream> #include<cs ...

  3. Luogu P3802 小魔女帕琪

    P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...

  4. P3802 小魔女帕琪 期望

    P3802 小魔女帕琪 期望 题面 题意稍微不清楚,题中的a[i]指的是属性i的魔法有a[i]个. 题目大意:有7种魔法,每种数量a[i],每次随机放出一个魔法,问放完为止出现7次魔法都不相同的期望次 ...

  5. Luogu P3802 小魔女帕琪(期望)

    P3802 小魔女帕琪 题意 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组 ...

  6. P3802 小魔女帕琪 概率与期望

    P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...

  7. 洛谷_Cx的故事_解题报告_第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

  8. 洛谷 P2317 [HNOI2005]星际贸易 解题报告

    P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...

  9. P3802 小魔女帕琪

    传送门 考虑前面7个魔法 如果前面七个魔法各不相同,那么就能完成一次帕琪七重奏 设 A=a1*a2*...*a7,S=a1+a2+...+a7,B=S*(S-1)*...*(S-6) 对于不同的施法顺 ...

随机推荐

  1. selenium webdriver API详解(二)

    本系列主要讲解webdriver常用的API使用方法(注意:使用前请确认环境是否安装成功,浏览器驱动是否与谷歌浏览器版本对应) 一:获取当前页面的title(一般获取title用于断言) from s ...

  2. leetcode-优美的排列

    假设有从 1 到 N 的 N 个整数,如果从这 N 个数字中成功构造出一个数组,使得数组的第 i 位 (1 <= i <= N) 满足如下两个条件中的一个,我们就称这个数组为一个优美的排列 ...

  3. javascript 强制转换规则 boolean 布尔值类型

    摘自 <你不知道的Javascript(中卷)> p55 一句话简述, 假值表以外的值均可以认为是真值,部分浏览器可能自定义了假值表以外的假值,并不符合W3C规范,需要特殊对待. 首先也是 ...

  4. OpenLDAP备份和恢复

    OpenLDAP中数据备份一般分为二种: 1)通过slapcat 指令进行备份 2)通过phpLDAPadmin控制台进行备份 备份方式1: 1)slapcat -v -l openldap-back ...

  5. R之RMySQL

    linux,mysql和R的版本信息: Linux naci 3.19.0-16-generic #16-Ubuntu SMP Server version: 5.6.24-0ubuntu2 (Ubu ...

  6. java-HttpGetPost-图片字节流上传

    在java程序开发中经常用到与服务端的交互工作,主要的就是传递相应的参数请求从而获取到对应的结果加以处理 可以使用Get请求与Post请求,注意!这里的Get请求不是通过浏览器界面而是在程序代码中设置 ...

  7. pspo过程文档

    项目计划总结:       日期/任务      听课        编写程序         阅读相关书籍 日总计          周一      110          60         ...

  8. 《我是IT小小鸟》读笔

    兴趣是第一原则.一定要根据自己的兴趣确定发展方向,不要盲目从众和跟风.没有一个人的经历是可以复制的,多思考,不要照搬他人的做法,学习一下想法还是可以的,具体方法因人而异.学习软件技术时,不仅在知识节点 ...

  9. Servlet处理表单

  10. QSerialPort-Qt串口通讯

    版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:QSerialPort-Qt串口通讯     本文地址:http://techieliang. ...