洛谷 P3802 小魔女帕琪 解题报告
P3802 小魔女帕琪
题目背景
从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼。
帕琪能熟练使用七种属性(金、木、水、火、土、日、月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从而唱出强力的魔法。比如说为了加强攻击力而将火和木组合,为了掩盖弱点而将火和土组合等等,变化非常丰富。
题目描述
现在帕琪与强大的夜之女王,吸血鬼蕾咪相遇了,夜之女王蕾咪具有非常强大的生命力,普通的魔法难以造成效果,只有终极魔法:帕琪七重奏才能对蕾咪造成伤害。帕琪七重奏的触发条件是:连续释放的7个魔法中,如果魔法的属性各不相同,就能触发一次帕琪七重奏。
现在帕琪有7种属性的能量晶体,分别为\(a_1,a_2,a_3,a_4,a_5,a_6,a_7\)(均为自然数),每次释放魔法时,会随机消耗一个现有的能量晶体,然后释放一个对应属性的魔法。
现在帕琪想知道,她释放出帕琪七重奏的期望次数是多少,可是她并不会算,于是找到了学\(OI\)的你
输入输出格式
输入格式:
一行7个数字,\(a_1,a_2,a_3,a_4,a_5,a_6,a_7\)
输出格式:
一个四舍五入保留3位的浮点数
数据范围:
对于30%的测试点,\(a_1+a_2+a_3+a_4+a_5+a_6+a_7<=10\)
对于100%的测试点,\(a_1+a_2+a_3+a_4+a_5+a_6+a_7<=10^9\)
UDT:2018.9.25
之前写的有不小问题,居然没人提。。
今天被期望虐惨了,去洛谷找了道颜色最低的期望题
然后...不会
好吧,正题...
首先直接考虑对于取的前7个能量晶体
设\(N=\sum_{i=1}^7 a_i\)
考虑前7个一连串取出了\(a_1,a_2,a_3,..a_7\)的概率
为\(\frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6}\)
因为是条件概率,所以样本空间减少了(n-x)
对条件概率:
简单一点的解释是,B在A发生的条件下发生的概率。
举个栗子,掷色子第一次投6概率为1/6,为A事件,第二次投6概率仍为1/6,为B事件。如果把两次投掷产生的一个结果算成一个最终状态,那么连续的状态AB发生的概率为1/36,也即是B在A发生的条件下发生的概率。
然后我们对取出1-7的式子发现,如果我们不按1-7的顺序取,分子分母并没有变化
那么直接按照排列组合,把所有顺序的全部统计
即\(7! \times \frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6}\)
但其实后面每七位对应的答案都是这样,下面讲为什么
在考虑之后怎么取之前,我们先想一个问题。
你班要选择投票一个人,在班花喵面前吃巧克力,然后班主任拿了一个盒盒让你们摸球球,里面有1个红球和29个白球(你班30人),抽到红球的人就有了这个至高无上的权利,一个个的去抽,那么顺序不一样的话,是公平的吗??
当然...是了
第一个人抽中的概率是 \(\frac {1}{30}\)
第二个人抽中的概率是 \(\frac {29}{30} \times \frac {1}{29}\)
第三个人抽中的概率是 \(\frac {29}{30} \times \frac {28}{29} \times \frac {1}{28}\)
...
有了这些我们可以感性理解在这个题中每七位都是一样的统计了
以上只是提供一个感性的类似的说明方法,和下面的并非直接相关
然后我们考虑用类似的方法把它说清楚
如果第一个取出\(a_1\)
我们考虑它取出的合法的第2-8个,就可以再次放招了
概率为
\(\frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6} \times \frac{a_1-1}{N-7}\)
同理组合有\(7!\)种(这\(7!\)是确定了首位而\(2-8\)不定的情况)
如果第一个取\(a_2\)
概率为
\(\frac{a_2}{N} \times \frac{a_1}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6} \times \frac{a_2-1}{N-7}\)
我们把第一个取出的7种可能加在一起
发现末项加起来化简是1
即\(\sum_{i=1}^7 \frac{a_i-1}{N-7}=1\)
于是对第2-8位的贡献化简结果就是\(7! \times \frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6}\)
所以最终答案就是(乘上了\(N-6\)项)
\(7! \times \frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times {a_7}\)
Code:
#include <cstdio>
double a[8],s,ans=1;
int main()
{
for(int i=1;i<=7;i++)
{
scanf("%lf",a+i);
s+=a[i];
}
for(int i=1;i<=6;i++)
ans=ans*a[i]/(s+1-i)*double(i);
ans=ans*a[7]*7.0;
printf("%.3lf\n",ans);
return 0;
}
2018.7.16
洛谷 P3802 小魔女帕琪 解题报告的更多相关文章
- 洛谷P3802 小魔女帕琪
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 洛谷 P3802 小魔女帕琪
传送门 题目大意:7个东西,每个有ai个,只有选7次 把7个东西都选到了才行. 题解:7!排列数*每次选择的概率 代码: #include<iostream> #include<cs ...
- Luogu P3802 小魔女帕琪
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- P3802 小魔女帕琪 期望
P3802 小魔女帕琪 期望 题面 题意稍微不清楚,题中的a[i]指的是属性i的魔法有a[i]个. 题目大意:有7种魔法,每种数量a[i],每次随机放出一个魔法,问放完为止出现7次魔法都不相同的期望次 ...
- Luogu P3802 小魔女帕琪(期望)
P3802 小魔女帕琪 题意 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组 ...
- P3802 小魔女帕琪 概率与期望
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 洛谷_Cx的故事_解题报告_第四题70
1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h> struct node { long x,y,c; ...
- 洛谷 P2317 [HNOI2005]星际贸易 解题报告
P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...
- P3802 小魔女帕琪
传送门 考虑前面7个魔法 如果前面七个魔法各不相同,那么就能完成一次帕琪七重奏 设 A=a1*a2*...*a7,S=a1+a2+...+a7,B=S*(S-1)*...*(S-6) 对于不同的施法顺 ...
随机推荐
- python全栈开发-前方高能-生成器和生成器表达式
python_day_13 今日主要内容1. 生成器和生成器函数生成器的本质就是迭代器生成器的三种创建办法: 1.通过生成器函数 2.通过生成器表达式创建生成器 3.通过数据转换 生成器函数: 函数中 ...
- 面试之HTTP基础(不断完善中)
目录 1. HTTP状态码 2.Cookie和Session Cookie Session 3.短连接与长连接 4.HTTPs 加密 5.Http和https的区别 6.HTTP/1.0 与 HTTP ...
- python5
print应用 // 输出两行 print "hahaha" print "hehehe" // 输出在同一行里 print "hahaha" ...
- testNG-失败用例重跑机制
下面简单介绍下testNG的失败重跑的实现方法: 1.首先编写一个类,实现IRetryAnalyzer类,重写其中的retry方法. public class TestNGRetry implemen ...
- Python接口测试实战1(下)- 接口测试工具的使用
如有任何学习问题,可以添加作者微信:lockingfree 课程目录 Python接口测试实战1(上)- 接口测试理论 Python接口测试实战1(下)- 接口测试工具的使用 Python接口测试实战 ...
- AndroidStudio 新建不同的Drawable文件夹
以前习惯eclipse开发Android的朋友们知道 新创建一个Android项目的时候eclipse会自动生成多个drawable文件夹来存放图片 但是Android Studio 新建项目的时候只 ...
- Python中的内建函数(Built_in Funtions)
前言 在Python官方文档的标准库章节中,第一节是简介,第二节就是Built_in Functions,可见内建函数是Python标准库的重要组成部分,而有很多内建函数我们平时却很少用到或根本就不知 ...
- 【ZABBIX】ZABBIX3.2升级3.4
小贴士 1.停止zabbix服务 service zabbix_server stop service zabbix_agentd stop /usr/local/zabbix/sbin/zabbix ...
- [ Continuously Update ] This is an *Index Page*.
The links below present papers in certain fields. Despite overlaps exist, their emphasis is markedly ...
- 【win10系统问题】远程桌面登录一次后,第二次登录看不到用户名和密码输入框
[win10系统远程桌面登录问题] 远程桌面登录某服务器一次后,第二次登录看不到用户名和密码输入框 [解决方法] 在注册表里找到该路径下的远程服务器ip,删除即可: HKEY_CURRENT_USER ...