【CF792E】Colored Balls(数论分块)
大意
有\(N\)种颜色的球,第\(i\)种球有\(Ai\)个,要求把球分成几个集合,使得:
- 一个集合里的球只能有一种颜色。
- 任意两个集合的球的数量相差不能超过1。
求这些球至少需要分几个集合。
思路
我们设这些集合的大小为\(Ans\)与\(Ans+1\),考虑如何判断一个\(Ans\)是否可行。
由于一个集合里只能有一种颜色,所以我们可以对于每一种颜色都单独考虑。
设当前颜色为\(i\),我们设 \(Ai=X\cdot Ans+ Y\),其中\(Ans,Y\)满足\(Ans>Y\)。
那么易发现,若\(Y>X\),则剩下的\(Y\)个数就算平均分到\(X\)个集合里,也会剩下\((Y-X)\)个数,那么我们的\(Ans\)就不符合条件了。
又由于在\(Ai=X\cdot Ans+ Y\)式子中的\(X=\left \lfloor Ai/Ans \right \rfloor,Y=Ai\%Ans\)
化简一下,一个\(Ans\)可行的条件为:对于任意\(i\),都满足\(\left \lfloor Ai/Ans \right \rfloor\ge Ai\%Ans\)
尽管已经知道了如何判断一个\(Ans\)是否可行,但如果我们暴力去枚举\(Ans\),复杂度也是\(O(N\times A)\),考虑优化。
首先有一个很明显的性质就是\(Ans\le Min(Ai)\),即\(Ans\)至多是\(A\)中的最小值。
对于\(Ans\)的判断式:\(\left \lfloor Ai/Ans \right \rfloor\ge Ai\%Ans\)。
发现在\(Ans\le\sqrt{Ai}\)时,肯定是恒满足的,因为
\(\left \lfloor Ai/Ans \right \rfloor\ge \sqrt{Ai}\ge Ans\ge Ai\%Ans\)
所以所有满足\(Ans\le\sqrt{Ai}\)的\(Ans\)肯定都是可行的\(Ans\)。
考虑\(Ans>\sqrt{Ai}\)的情况:
在这种情况下,我们的判断式就会满足\(\left \lfloor Ai/Ans \right \rfloor<\sqrt{Ai}<Ans\),
所以我们不妨枚举\(\left \lfloor Ai/Ans \right \rfloor\)即\(X\)的取值,这样的复杂度是\(O(N\cdot\sqrt{A})\),可以接受。
然后又由于要让\(Ans\)可行,所以我们要让\(\left \lfloor Ai/Ans \right \rfloor\ge Ai\%Ans\),即\(Ans>X\ge Y\).
考虑满足上述条件下的\(Ans\)的取值为多少:
- 由于\(Ai=X\cdot Ans+ Y\),\(Ans=\left \lfloor \frac{Ai-Y}{X} \right\rfloor\),在这种情况下,我们只知道\(X\)和\(Ai\),所以考虑\(Y\)的取值情况。
由于\(0\le Y\le X\),则有\(\frac{Ai-X}{X}\le \frac{Ai-Y}{X}\le \frac{Ai}{X}\),\(\left \lfloor \frac{Ai-X}{X}\right \rfloor\le \left \lfloor \frac{Ai-Y}{X}\right \rfloor\le \left \lfloor \frac{Ai}{X}\right \rfloor\),
即\(\left \lfloor \frac{Ai}{X}-1\right \rfloor\le Ans\le \left \lfloor \frac{Ai}{X}\right\rfloor\),\(\left \lfloor \frac{Ai}{X}\right \rfloor-1\le Ans\le \left \lfloor \frac{Ai}{X}\right\rfloor\)
故\(Ans=\left \lfloor \frac{Ai}{X}\right \rfloor-1\)或\(\left \lfloor \frac{Ai}{X}\right\rfloor\), - 另:当\(Ans=\left \lfloor \frac{Ai}{X}\right \rfloor-1\)时,\(Ai=X\cdot Ans+Y=X\cdot\left \lfloor \frac{Ai}{X}\right\rfloor+Y-X\),
又由于\(Y-X\le 0,X\cdot\left \lfloor \frac{Ai}{X}\right\rfloor\le Ai\),所以\(Ans=\left \lfloor \frac{Ai}{X}\right \rfloor-1\)时,只在\(Ai\%X=0\)时成立。
(注:也可以这样理解:\(Ai=X\cdot Ans=X\cdot(Ans-1)+X\))
综上,\(Ans=\left \lfloor \frac{Ai}{X} \right \rfloor\),特殊的,当\(Ai\%X=0\)时,\(Ans\)还有可能为\((\left \lfloor \frac{Ai}{X}\right\rfloor-1)\)。
在求出\(Ans\)(集合大小中较小值)后,统计答案时就优先放\(Ans+1\),再放\(Ans\)这样的考虑就行了。
代码
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
#define LL long long
const int MAXN=505;
int N,A[MAXN];
int St,Mi=1e9,Ans;
int Check(int ans){
for(int i=1;i<=N;i++)
if(A[i]/ans<A[i]%ans)
return 0;
return 1;
}
long long Get(){
long long ans=0;
for(int i=1;i<=N;i++){
int m=(Ans+1-A[i]%(Ans+1))%(Ans+1);//还剩m个空位需要Ans来补.
ans+=m+(A[i]-m*Ans)/(Ans+1);
}
return ans;
}
int main(){
scanf("%d",&N);
for(int i=1;i<=N;i++)
scanf("%d",&A[i]),Mi=min(Mi,A[i]);
St=sqrt(Mi)+1;Ans=St-1;
for(int i=1;i<=St;i++){
if(Check(Mi/i)){
Ans=max(Ans,Mi/i);
break;
}
if(Mi%i==0)
if(Check(Mi/i-1)){
Ans=max(Ans,Mi/i-1);
break;
}
}
printf("%lld\n",Get());
}
/*
A<=(A/K)*(K+1)
ceil(A/val)-1<=K
*/
【CF792E】Colored Balls(数论分块)的更多相关文章
- CF792E Colored Balls
题目大意:将n个数分解成若干组,如4 = 2+2, 7 = 2+2+3,保证所有组中数字之差<=1. 首先我们能想到找一个最小值x,然后从x+1到1枚举并check,找到了就输出.这是40分做法 ...
- CF792E Colored Balls【思维】
题目传送门 考试的时候又想到了小凯的疑惑,真是中毒不浅... 设每一个数都可以被分成若干个$k$和$k+1$的和.数$x$能够被分成若干个$k$和$k+1$的和的充要条件是:$x%k<=floo ...
- Codeforces554 C Kyoya and Colored Balls
C. Kyoya and Colored Balls Time Limit: 2000ms Memory Limit: 262144KB 64-bit integer IO format: %I64d ...
- codeforces 553A . Kyoya and Colored Balls 组合数学
Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are ...
- Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls 排列组合
C. Kyoya and Colored Balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...
- Kyoya and Colored Balls(组合数)
Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- C. Kyoya and Colored Balls(Codeforces Round #309 (Div. 2))
C. Kyoya and Colored Balls Kyoya Ootori has a bag with n colored balls that are colored with k diffe ...
- 【BZOJ1257】余数之和(数论分块,暴力)
[BZOJ1257]余数之和(数论分块,暴力) 题解 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的 ...
- 51nod“省选”模测第二场 B 异或约数和(数论分块)
题意 题目链接 Sol 这题是来搞笑的吧.. 考虑一个数的贡献是\(O(\frac{N}{i})\) 直接数论分块. #include<bits/stdc++.h> #define Pai ...
随机推荐
- .net core中Grpc使用报错:The response ended prematurely.
当我们调用Grpc是出现下面的一堆异常时,一般是由于LTS导致的: Call failed with gRPC error status. Status code: 'Unavailable', Me ...
- 记一次log4j2引发的渗透测试
前言 记一次log4j2打入内网并用CVE-2021-42287.CVE-2021-42278获取到DC权限的靶场渗透. 外网打点 首先对web进行端口扫描,发现38080端口和22端口 访问一下38 ...
- 在 GitHub 复活 80 年代的游戏代码,它们出自第一本售出百万册的计算机书籍
今儿我在 GitHub 看到了一个很眼熟的名字和头像,但是第一时间没想起来他是谁.算了先看看是个什么神仙开源项目,竟然能登上今天的 GitHub 趋势榜首. 该项目是把<BASIC Comput ...
- SpringBoot 之 配置文件、yaml语法、配置注入、松散绑定
配置文件 SpringBoot 有两种配置文件格式,二选一即可,官方推荐 yaml: application.properties key=value的格式 application.yaml key: ...
- 04.python哈希表
python哈希表 集合Set 集合,简称集.由任意个元素构成的集体.高级语言都实现了这个非常重要的数据结构类型. Python中,它是可变的.无序的.不重复的元素的集合. 初始化 set() -&g ...
- python 安装包时提示“unsupport command install”
为什么提示找不到? 电脑安装了LoadRunnder,LoadRunner也有pip.exe,导致找不到python的exe 解决方法: 切换到python pip的路径进行安装,进到这个路径下,进行 ...
- Django_模型类详解(七)
# 定义书籍模型类 class BookInfo(models.Model): btitle = models.CharField(max_length=20) # 书籍名称 bpub_date = ...
- mybatis-plus实现多表联查
一.方法一 1.在pojo模块下新建一个VO 包路径用于提供页面展示所需的数据 2.在vo包下新建EmployInfo类,此类继承了Employees类,再把Dept类的数据复制过来 3.在Dao层中 ...
- 在CentOS7 安装 jq
root@: 安装EPEL源: yum install epel-release 安装完EPEL源后,可以查看下jq包是否存在: yum list jq 安装jq: yum install jq 命令 ...
- 第51篇-SharedRuntime::generate_native_wrapper()生成编译入口
当某个native方法被调用时,一开始它会从解释入口进入,也就是我之前介绍的.由InterpreterGenerator::generate_native_entry()函数生成的入口例程.在这个例程 ...