数据集与词性标注

数据集是NLP中的重要一环。

但是提到数据集,很多人的第一个想法可能是:“这玩意从网上下载就好了,不用管”。

真的不用管?最开始我也是这么认为的

于是我直奔CoNLL-2003去下载数据集。地址如下:https://www.clips.uantwerpen.be/conll2003/ner/

但是经过了解,该数据集的来源是新闻报纸之类的内容,与我要应用NLP的领域严重不符。

所以,除非你的NLP任务与网络上已经公布的、较多人实现的任务重合,否则数据集一般不能直接使用

也就是说,在完成你的NLP任务前,你需要自行构建一个数据集

但是怎么做呢?我们现在可以确认的一件事情是:数据集不可能手动构建的

拿CoNLL-2003的数据集进行分析,我们需要构建一个与其形式类似的数据集应该怎么做?

U.N.         NNP  I-NP  I-ORG
official NN I-NP O
Ekeus NNP I-NP I-PER
heads VBZ I-VP O
for IN I-PP O
Baghdad NNP I-NP I-LOC
. . O O

这是eng.traindata数据集的一部分,简单介绍一下构成

第一列是单词,显然是来自原始文本;

第二列是词性(pos)标签,就是名词、动词、专有名词等等一些表示某个词词性的标注

第三列是句法块标签,表示某词在该句子中的上下文成分

第四列是命名实体识别(NER)标签,关于什么是NER,请看

https://www.cnblogs.com/DAYceng/p/14923065.html/

由于句法分析(也就是第三列标签)需要训练单独的模型来实现,这里不做介绍

到这里,事情就变得有点眉目了

我们得到了两个关键词:POSNER

通过高强度互联网搜索发现NLTK正好有用于POS的模块(nltk.pos_tag)以及用于chunk的模块(ne_chunk

查看NLTK的文档得知,pos_tag()的输入是一个进行tokenize分词之后的句子

这里文档使用了word_tokenize模块进行分词,如果你觉得其分词结果不满意,你也可以直接用split分词

tokenized_sentences = corup_token.split(" ")

pos_res = nltk.pos_tag(tokenized_sentences) #标注句子

这样就得到了一个句子的POS 标签

下面进行NER标注,依然是使用NLTK,并且需要使用到上一步中POS的结果

注:chunk的结果是一个“树”(一种特殊的数据结构)

tree = ne_chunk(pos_res)   # 使用nltk的chunk工具获得chunk的树结构

使用tree2conlltags对树进行解析可以得到我们需要的结果

iob_tags_listtup = tree2conlltags(tree) # 解析树,获得chunktags的元组列表

至此,我们就得到了一个句子的pos和ner标签

打包成一个函数如下:

def postags(croup_token,output):
'''
使用nltk.pos_tag对分词之后的summary进行词性标注
:param output:
选择输出形式,
输出原始格式数据(0):[('buffer', 'NN'), ('overflow', 'NN'), ...,(...)]
输出词性标签(1):['NN', 'NN',...,'...']
输出chunking标签(2)
:param croup_token:经过'分词-去除特殊符号-小写'处理的sentences数据
:return:列表返回值
'''
ne_chunked_tags = []
pos_tags = []
pos_raw = [] tokenized_sentences = croup_token_token.split(" ") #nltk.word_tokenize(data)
# print(tokenized_sentences)
pos_res = nltk.pos_tag(tokenized_sentences)
pos_res_tup = pos_res[0] # 得到元组 tree = ne_chunk(pos_res) # 使用nltk的chunk工具获得chunk的树结构
# print(tree)
iob_tags_listtup = tree2conlltags(tree) # 解析树,获得chunktags的元组列表
# print(iob_tags_listtup)
# print(iob_tags_listtup)
for i in range(len(iob_tags_listtup)):
# print(iob_tags_listtup[i])
tmp_tup = iob_tags_listtup[i]
# print(tmp_tup[2])
pos_raw.append(tmp_tup)
pos_tags.append(tmp_tup[1])
ne_chunked_tags.append(tmp_tup[2])
# print(ne_chunked_tags) if output == 0:
return pos_raw
elif output == 1:
return pos_tags
elif output == 2:
return ne_chunked_tags

【NLP学习其四】如何构建自己用于训练的数据集?什么是词性标注?的更多相关文章

  1. 深度学习之TensorFlow构建神经网络层

    深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可 ...

  2. Caffe学习系列(四)之--训练自己的模型

    前言: 本文章记录了我将自己的数据集处理并训练的流程,帮助一些刚入门的学习者,也记录自己的成长,万事起于忽微,量变引起质变. 正文: 一.流程 1)准备数据集  2)数据转换为lmdb格式  3)计算 ...

  3. caffe︱深度学习参数调优杂记+caffe训练时的问题+dropout/batch Normalization

    一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优 ...

  4. 文本向量化及词袋模型 - NLP学习(3-1)

    分词(Tokenization) - NLP学习(1) N-grams模型.停顿词(stopwords)和标准化处理 - NLP学习(2)   之前我们都了解了如何对文本进行处理:(1)如用NLTK文 ...

  5. UFLDL深度学习笔记 (四)用于分类的深度网络

    UFLDL深度学习笔记 (四)用于分类的深度网络 1. 主要思路 本文要讨论的"UFLDL 建立分类用深度网络"基本原理基于前2节的softmax回归和 无监督特征学习,区别在于使 ...

  6. NLP学习(5)----attention/ self-attention/ seq2seq/ transformer

    目录: 1. 前提 2. attention (1)为什么使用attention (2)attention的定义以及四种相似度计算方式 (3)attention类型(scaled dot-produc ...

  7. nlp学习杂记

    什么是 token embedding? 输入一个word,在字典里查找得到它对应的下标就是token,然后用该数字下标去lookup表查找得到该词对应的词向量(词嵌入)就是embedding wor ...

  8. NLP学习(3)---Bert模型

    一.BERT模型: 前提:Seq2Seq模型 前提:transformer模型 bert实战教程1 使用BERT生成句向量,BERT做文本分类.文本相似度计算 bert中文分类实践 用bert做中文命 ...

  9. [笔记] 基于nvidia/cuda的深度学习基础镜像构建流程 V0.2

    之前的[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程已经Out了,以这篇为准. 基于NVidia官方的nvidia/cuda image,构建适用于Deep Learning的基础im ...

随机推荐

  1. python返回列表最大值(java返回数组最大值)

    b=["3","2","1","6","5","2","1" ...

  2. 5、could not start the service mysql

    1.这个原因是因为mysql多次安装没有卸载干净的原因; 2.解决办法是: (1)删除系统中已经安装的mysql目录中的内容: (2)同时按住"win+r"键调出"运行& ...

  3. Docker搭建Jenkins+Maven/Gradle——代码自动化运维部署平台(二)

    一.简介 1.Jenkins 概述: Jenkins是一个功能强大的应用程序,允许持续集成和持续交付项目,无论用的是什么平台.这是一个免费的源代码,可以处理任何类型的构建或持续集成.集成Jenkins ...

  4. 什么是forward和include?

    请求包含的例子 第一个Servlet (DispatcherServlet) @Override protected void doGet(HttpServletRequest req, HttpSe ...

  5. Warning: bad syntax, perhaps a bogus '-'? See /usr/share/doc/procps-3.2.8/FAQ

    解决办法: 去掉ps -aux 中的"-",改成ps aux 就可以了

  6. 2020年MySQL数据库面试题总结(50道题含答案解析)

    1.MySQL 中有哪几种锁? (1)表级锁:开销小,加锁快:不会出现死锁:锁定粒度大,发生锁冲突的概率最 高,并发度最低. (2)行级锁:开销大,加锁慢:会出现死锁:锁定粒度最小,发生锁冲突的概率最 ...

  7. 使用Less/Sass生成Bootstrap格栅样式系统

    熟悉Bootstrap的同学应该了解其中的格栅系统,用来排版非常方便.他将页面分为12等分,并且适用不同的尺寸屏幕.超小xs(小于768px),小屏sm(大于等于768px),中屏md(大于等于992 ...

  8. FastTunnel-开源内网穿透框架

    FastTunnel - 打造人人都能搭建的内网穿透工具 FastTunnel是用.net core开发的一款跨平台内网穿透工具,它可以实现将内网服务暴露到公网供自己或任何人访问. 与其他穿透工具不同 ...

  9. MyBatis框架中的条件查询!关键字exists用法的详细解析

    exists用法 exists: 如果括号内子查询语句返回结果不为空,说明where条件成立,就会执行主SQL语句 如果括号内子查询语句返回结果为空,说明where条件不成立,就不会执行主SQL语句 ...

  10. 长按短按控制LED灯-ESP32中断处理

    #include <stdio.h> #include <string.h> #include <stdlib.h> #include "freertos ...