第十个知识点:RSA和强RSA问题有什么区别

这个密码学52件事数学知识的第一篇,也是整个系列的第10篇.这篇介绍了RSA问题和Strong-RSA问题,指出了这两种问题的不同之处.

密码学严重依赖于这样的假设,某些数学问题难以在有限的时间内解决.让我们看公钥(非对称)密码学,这也是这篇文章中我们使用的一个假设----单向函数(One-Way function)存在.例如,一个函数在一种情况下很容易计算,而在另一种情况下不容易计算.我们使用数论算法来产生这样的函数.

分解

数论中最先讨论的问题就是分解.给一个合数\(N\),分解问题就是找出正整数\(p\),\(q\)使得\(N=pq\).尽管这面临的似乎是一个简单的问题,但事实上它是很难的,值得深入研究的问题.我们可以在指数时间检查所有的\(p=2,...,\sqrt N\).然而解决问题在指数时间不是足够快的.尽管有多年的研究,还没有多项式算法可以解决分解大数的问题.很显然对\(N\)的某个特定的值很容易解决.例如\(N\)是偶数.但是,我们讨论的密码学构造中,\(N\)是一个非常大的数,同时被连个大素数构造\(p,q\).

RSA问题

在RSA公钥加密中,Alice使用Bob的公钥\((n,e)\)加密明文\(M\)生成\(C\),计算方法为\(C=M^e(mod\space n)\),其中\(n\)是由两个大素数产生的,\(e\ge 3\)并且是一个奇数且和\(Z^*_n\)互质,\(Z_n\).Bob知道私钥\((n,e)\),其中\(de=1(mode(p-1)(q-1))\)意味着\(M=C^d(mod\space n)\).攻击者能够窃听\(C\)同时知道公钥\((n,e)\).然而为了计算\(M\),攻击者必须找到\(n\)的分解.因此,这意味着RSA问题并不比整数因子分解困难,但是如果选择合适的\(n\),这仍然是一个很难解决的问题.

强RSA假设

强RSA假设不同于RSA假设主要在对手可以选择奇数的公共指数\(e\ge3\).对手的任务就是计算出\(M\)从一个给定的\(C=M^e(mod \space n)\).这个问题至少和RSA一样简单,这意味着这个假设更强.他的问题至少和RSA问题一样简单这意味着强RSA假设是一个更强的假设。RSA问题已经有25年的历史了。公钥加密方案的优点完全来自于RSA问题.

[1] - http://people.csail.mit.edu/rivest/RivestKaliski-RSAProblem.pdf

(注:觉得它这篇写的有些混乱,可以直接参考这个链接的pdf).

第十个知识点:RSA和强RSA问题有什么区别?的更多相关文章

  1. 第四十个知识点 一般来说SPA和DPA的区别是什么

    第四十个知识点 一般来说SPA和DPA的区别是什么 原文地址:http://bristolcrypto.blogspot.com/2015/07/52-things-number-40-what-is ...

  2. C# RSA和Java RSA互通

    今天调查了C# RSA和Java RSA,网上很多人说,C#加密或者java加密 ,Java不能解密或者C#不能解密 但是我尝试了一下,发现是可以的,下面就是我尝试的代码,如果您有什么问题,我想看看, ...

  3. Linux新手要了解的十个知识点

    Linux对于有的新手来说,感觉无从下手,或者不知道从哪儿学起?怎么学?针对这些问题,我给大家说说新手学习Linux需要了解的十个知识点. 注意大小写 Linux是大小写敏感的系统,举个例子,Mozi ...

  4. 第五十个知识点:什么是BLS基于对的签名方案?

    第五十个知识点:什么是BLS基于对的签名方案? BLS签名方案使用了椭圆曲线上了Weil对,本质上是一个在曲线上除n划分的双线性形式,使用 \(n^{th}\) 个单位根. 假设我们有一个椭圆曲线\( ...

  5. 第二十个知识点:Merkle-Damgaard hash函数如何构造

    第二十个知识点:Merkle-Damgaard hash函数如何构造 这里讲的是MD变换,MD变换的全称为Merkle-Damgaard变换.我们平时接触的hash函数都是先构造出一个防碰撞的压缩函数 ...

  6. 第三十个知识点:大致简述密钥协商中的BR安全定义。

    第三十个知识点:大致简述密钥协商中的BR安全定义. 在两方之间建密钥共享是一件密码学中古老的问题.就算只考虑定义也比标准加密困难的多.尽管古典的Diffie-Hellman协议在1976年思路解决了这 ...

  7. ****ural 1141. RSA Attack(RSA加密,扩展欧几里得算法)

    1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a ...

  8. RSA加解密&RSA加验签详解

    RSA 加密算法是目前最有影响力的 公钥加密算法,并且被普遍认为是目前 最优秀的公钥方案 之一.RSA 是第一个能同时用于 加密 和 数字签名 的算法,它能够 抵抗 到目前为止已知的 所有密码攻击,已 ...

  9. python爬虫破解带有RSA.js的RSA加密数据的反爬机制

    前言 同上一篇的aes加密一样,也是偶然发现这个rsa加密的,目标网站我就不说了,保密. 当我发现这个网站是ajax加载时: 我已经习以为常,正在进行爬取时,发现返回为空,我开始用findler抓包, ...

随机推荐

  1. JavaScript获取html表单值验证后跳转网页中的关键点

    关键代码: 1.表单部分 <form action="Depart.jsp" name="myform" method="post" ...

  2. LeetCode替换空格

    LeetCode 替换空格 题目描述 请实现一个函数,把字符串 s 中的每个空格替换成"%20". 实例 1: 输入:s = "We are happy." 输 ...

  3. 【MarkDown】--使用教程

    MarkDown使用教程 目录 MarkDown使用教程 一. 常用设置 1.1 目录 1.2 标题 1.3 文本样式 (1)引用 (2)高亮 (3)强调 (4)水平线 (5)上下标 (6)插入代码 ...

  4. promise.all的应用场景举例

    Promise.all方法 简而言之:Promise.all( ).then( )适用于处理多个异步任务,且所有的异步任务都得到结果时的情况. 比如:用户点击按钮,会弹出一个弹出对话框,对话框中有两部 ...

  5. STL全特化与偏特化

    在泛型编程中,常常会使用一些非完全泛型的类模板,这就是特化. 如何理解全特化呢?如上图所示,第一个template class是空间配置器的类模板,第二个就是一个全特化的template class. ...

  6. spring-dm 一个简单的实例

    spring-dm2.0  运行环境,支持JSP页面 运行spring web 项目需要引用包

  7. Linux:spool命令

    格式调整有以下参数: set echo on/off--是否显示脚本中的需要执行的命令 set feedback on/off--是否显示 select 结果之后返回多少行的提示 set linesi ...

  8. 【Linux】【Services】【SaaS】Docker+kubernetes(5. 安装和配置ETCD集群)

    1. 简介: 1.1. ETCD是kubernetes和openstack都用到的组件,需要首先装好 1.2. 官方网站:https://coreos.com/etcd/ 1.3. ETCD的作用: ...

  9. Mycat的事务异常:Caused by: java.sql.SQLException: Transaction error, need to rollback.Distributed transaction is disabled!

    工作中踩到的一个坑 ,一个报错,导致整个服务不能用.工程部署四个节点,请求是按轮询机制分发的,所以请求四次报错,整个系统瘫痪.记录下 . 项目环境:spring +Mybaties +mycat +D ...

  10. 【力扣】122. 买卖股票的最佳时机 II

    给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必须在再次 ...