Something about 树链剖分
声明:部分思路与图片源于OI Wiki
关于树链剖分
树链剖分用于将树分割成若干条链的形式,以维护树上路径的信息。
树链剖分有多种形式,如 重链剖分,长链剖分 和用于 $LCT$ 的剖分,大多数情况下,“树链剖分”都指“重链剖分”。
重链剖分可以将树上的任意一条路径划分成不超过$O(\log n)$条连续的链,每条链上的点深度互不相同(即是自底向上的一条链,链上所有点的$LCA$为链的一个端点)。
重链剖分还能保证划分出的每条链上的节点$DFS$序连续,因此可以方便地用一些维护序列的数据结构(如线段树)来维护树上路径的信息。
如:
1.修改 树上两点之间的路径上 所有点的值。
2.查询 树上两点之间的路径上 节点权值的 和/极值/其它(在序列上可以用数据结构维护,便于合并的信息)
除了配合数据结构来维护树上路径信息,树剖还可以用来$O(\log n)$(且常数较小)地求$LCA$。在某些题目中,还可以利用其性质来灵活地运用树剖。
重链剖分
给出以下定义:
定义 重子节点 表示其子节点中子树最大的子结点。如果有多个子树最大的子结点,取其一。如果没有子节点,就无重子节点。
定义 轻子节点 表示剩余的所有子结点。
从这个结点到重子节点的边为 重边。
到其他轻子节点的边为 轻边。
若干条首尾衔接的重边构成 重链。
把落单的结点也当作重链,那么整棵树就被剖分成若干条重链。
实现
做出以下说明:
$Ftr_x$表示节点$x$在树上的父亲。
$Dep_x$表示节点$x$在树上的深度。
$Size_x$表示节点$x$的子树的节点个数。
$Son_x$表示节点$x$的重儿子。
$Top_x$表示节点$x$所在 重链 的顶部节点(深度最小)。
$Dfn_x$表示节点$x$的 $DFS$ 序,也是其在线段树中的编号。
$Rank_x$表示 $DFS$ 序所对应的节点编号,有$Rank_{Dfn_x}=x$ 。
我们进行两遍 DFS 预处理出这些值,其中第一次$DFS$求出 $Ftr_x$,$Dep_x$,$Size_x$,$Son_x$,第二次 DFS 求出 $Top_x$,$Dfn_x$,$Rank_x$。
inline void DFS1(int o)
{
Son[o] = -1;
Size[o] = 1;
for (register int j = h[o]; j; j = nxt[j])
if (!Dep[p[j]])
{
Dep[p[j]] = Dep[o] + 1;
Ftr[p[j]] = o;
DFS1(p[j]);
Size[o] += Size[p[j]];
if (Son[o] == -1 or Size[p[j]] > Size[Son[o]])
Son[o] = p[j];
}
}
inline void DFS2(int o , int t)
{
Top[o] = t;
Dfn[o] = ++Cnt;
Rank[Cnt] = o;
if (Son[o] == -1)
return;
DFS2(Son[o] , t);
for (register int j = h[o]; j; j = nxt[j])
if (p[j] != Son[o] and p[j] != Ftr[o])
DFS2(p[j] , p[j]);
}
重链剖分性质
树上每个节点都属于且仅属于一条重链。
重链开头的结点不一定是重子节点(因为重边是对于每一个结点都有定义的)。
所有的重链将整棵树 完全剖分。
在剖分时重边优先遍历,最后树的$DFN$序上,重链内的$DFN$序是连续的。按$DFN$排序后的序列即为剖分后的链。
一颗子树内的$DFN$序是连续的。
可以发现,当我们向下经过一条 轻边 时,所在子树的大小至少会除以二。
因此,对于树上的任意一条路径,把它拆分成从$LCA$分别向两边往下走,分别最多走$O(\log n)$次,因此,树上的每条路径都可以被拆分成不超过$O(\log n)$条重链。
(待更新)
Something about 树链剖分的更多相关文章
- BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2050 Solved: 817[Submit][Status ...
- BZOJ 1984: 月下“毛景树” [树链剖分 边权]
1984: 月下“毛景树” Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 1728 Solved: 531[Submit][Status][Discu ...
- codevs 1228 苹果树 树链剖分讲解
题目:codevs 1228 苹果树 链接:http://codevs.cn/problem/1228/ 看了这么多树链剖分的解释,几个小时后总算把树链剖分弄懂了. 树链剖分的功能:快速修改,查询树上 ...
- 并查集+树链剖分+线段树 HDOJ 5458 Stability(稳定性)
题目链接 题意: 有n个点m条边的无向图,有环还有重边,a到b的稳定性的定义是有多少条边,单独删去会使a和b不连通.有两种操作: 1. 删去a到b的一条边 2. 询问a到b的稳定性 思路: 首先删边考 ...
- 树链剖分+线段树 CF 593D Happy Tree Party(快乐树聚会)
题目链接 题意: 有n个点的一棵树,两种操作: 1. a到b的路径上,给一个y,对于路径上每一条边,进行操作,问最后的y: 2. 修改某个条边p的值为c 思路: 链上操作的问题,想树链剖分和LCT,对 ...
- 树链剖分+线段树 HDOJ 4897 Little Devil I(小恶魔)
题目链接 题意: 给定一棵树,每条边有黑白两种颜色,初始都是白色,现在有三种操作: 1 u v:u到v路径(最短)上的边都取成相反的颜色 2 u v:u到v路径上相邻的边都取成相反的颜色(相邻即仅有一 ...
- bzoj2243树链剖分+染色段数
终于做了一道不是一眼出思路的代码题(⊙o⊙) 之前没有接触过这种关于染色段数的题目(其实上课好像讲过),于是百度了一下(现在思维能力好弱) 实际上每一段有用的信息就是总共有几段和两段各是什么颜色,在开 ...
- bzoj3631树链剖分
虽然是水题1A的感觉太爽了O(∩_∩)O~ 题意相当于n-1次树上路径上每个点权值+1,最后问每个点的权值 本来想写线段树,写好了change打算框架打完了再来补,结果打完发现只是区间加和单点查 前缀 ...
- BZOJ 3531: [Sdoi2014]旅行 [树链剖分]
3531: [Sdoi2014]旅行 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1685 Solved: 751[Submit][Status] ...
- BZOJ 2243: [SDOI2011]染色 [树链剖分]
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6651 Solved: 2432[Submit][Status ...
随机推荐
- excle名字后面直接跟别的出来
名字后面直接跟别的出来 =IF($E6="","",VLOOKUP(E6,通讯录!$B$2:$D$1000,3,0)) $E6:是填写位置的地方 VLOOKUP ...
- 你觉得我的这段Java代码还有优化的空间吗?
上周,因为要测试一个方法的在并发场景下的结果是不是符合预期,我写了一段单元测试的代码.写完之后截了个图发了一个朋友圈,很多人表示短短的几行代码,涉及到好几个知识点. 还有人给出了一些优化的建议.那么, ...
- CSS 世界中的方位与顺序
在 CSS 中,我们经常会与各种方向方位打交道. 譬如 margin.padding,它们就会有 margin-left.margin-right 或者是 padding-left.padding-r ...
- python 得到汉字的拼音
import pypinyin # 不带声调的(style=pypinyin.NORMAL) def pinyin(word): s = '' for i in pypinyin.pinyin(wor ...
- Python之抖音快手代码舞--字符舞
先上效果,视频敬上: 字符舞: 代码舞 源代码: video_2_code_video.py 1 import argparse 2 import os 3 import cv2 4 import s ...
- 【012】JavaSE面试题(十二):多线程(2)
第一期:Java面试 - 100题,梳理各大网站优秀面试题.大家可以跟着我一起来刷刷Java理论知识 [012] - JavaSE面试题(十二):多线程(2) 第1问:多线程的创建方式? 方式一:继承 ...
- [刘阳Java]_MySQL数据优化总结_查询备忘录
数据库优化是在后端开发中必备技能,今天写一篇MySQL数据优化的总结,供大家看看 一.MySQL数据库优化分类 我们通过一个图片形式来看看数据优化一些策略问题 不难看出,优化有两条路可以选择:硬件与技 ...
- Apache HBase 1.7.1 发布,分布式数据库
Apache HBase 是一个开源的.分布式的.版本化的.非关系的数据库.Apache HBase 提供对数十亿个数据的低延迟随机访问在非专用硬件上有数百万列的行. 关于 HBase更多内容,请参阅 ...
- MySQL 8.x 新版本特性赶紧学!!Linux 服务器上安装 MySQL 8.x
我是陈皮,一个在互联网 Coding 的 ITer,微信搜索「陈皮的JavaLib」第一时间阅读最新文章,回复[资料],即可获得我精心整理的技术资料,电子书籍,一线大厂面试资料和优秀简历模板. 引言 ...
- linux服务器安装svn超详细介绍
#!/bin/sh REPOS="$1" REV="$2" export LANG=en_US.UTF-8 LOG_PATH=/tmp/svn.log echo ...