• 上周因为项目中的线程池参数设置的不合理,引发了一些问题,看了下代码,发现对JUC中的一些概念需要再清晰些。

Runnable

@FunctionalInterface
public interface Runnable {
/**
* When an object implementing interface <code>Runnable</code> is used
* to create a thread, starting the thread causes the object's
* <code>run</code> method to be called in that separately executing
* thread.
* <p>
* The general contract of the method <code>run</code> is that it may
* take any action whatsoever.
*
* @see java.lang.Thread#run()
*/
public abstract void run();
}
  • Runable是一个interface,定义了run()方法,The Runnable interface should be implemented by any class whose instances are intended to be executed by a thread。如果想在其他线程中执行你的task,需要实现这个接口。

Callable

@FunctionalInterface
public interface Callable<V> {
/**
* Computes a result, or throws an exception if unable to do so.
*
* @return computed result
* @throws Exception if unable to compute a result
*/
V call() throws Exception;
}
  • 有了Runnable,为啥还需要Callable呢,可以看到Runnable和Callable的两个不同,第一,Runnable是没有返回值的,第二,Runnable是不会抛出checked exception的,而有时候我们需要知道任务执行之后的返回,同时也希望利用异常机制完成一些逻辑。所以有了Callable。
  • JUC中的Executors这个Factory类,提供了Runnable转Callable的方法。

Future

  • future 是一个inteface,提供了一系列方法,来帮助我们获取异步执行的task的执行状况和执行结果。

FutureTask

  • FutureTask实现了RunnableFuture接口,即既实现了Runnable接口,又实现了Future接口。所以他有两个功能,第一,作为一个task,提交到别的线程中异步执行,第二,通过future提供的一些接口,获取task的异步执行状态。
/**
* The run state of this task, initially NEW. The run state
* transitions to a terminal state only in methods set,
* setException, and cancel. During completion, state may take on
* transient values of COMPLETING (while outcome is being set) or
* INTERRUPTING (only while interrupting the runner to satisfy a
* cancel(true)). Transitions from these intermediate to final
* states use cheaper ordered/lazy writes because values are unique
* and cannot be further modified.
*
* Possible state transitions:
* NEW -> COMPLETING -> NORMAL
* NEW -> COMPLETING -> EXCEPTIONAL
* NEW -> CANCELLED
* NEW -> INTERRUPTING -> INTERRUPTED
*/
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6; /** The underlying callable; nulled out after running */
private Callable<V> callable;
/** The result to return or exception to throw from get() */
private Object outcome; // non-volatile, protected by state reads/writes
/** The thread running the callable; CASed during run() */
private volatile Thread runner;
/** Treiber stack of waiting threads */
private volatile WaitNode waiters;
  • 看下FutureTask的几个属性,首先state表示当前task的执行状态,其中,开始状态位NEW表示task还没开始执行。NORMAL,CANCELLED,INTERRUPTED为终态,COMPLETING和INTERRUPTING为临时状态,最终会通过上面的几个状态转移路径,转移到终态。
  • callable,表示具体执行的任务。
  • outcome, task 执行的返回结果
  • runner,执行这个task的线程
  • waiters,通过get方法获取此task执行结果被阻塞的线程。
  • 看下几个核心的方法,我们知道,futuretask提交到别的线程里后,最终会调用task的run方法执行具体逻辑。
public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
  • run方法执行时,首先检查当前的状态是否是NEW,如果不是NEW说明已经被执行过了。开始执行之前,标记执行当前task的线程到runner。
  • 调用callable的run方法,执行。抛异常时,设置setException。正常结束时,set结果。看下这两步里都会调到的finishCompletion方法。
/**
* Removes and signals all waiting threads, invokes done(), and
* nulls out callable.
*/
private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
} done(); callable = null; // to reduce footprint
}
  • 这里主要是在通知所有阻塞在watch这个task结果的线程,通知他们当前task已经执行结束了。
  • 在执行结束时,看到finally里还有段逻辑
finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
} private void handlePossibleCancellationInterrupt(int s) {
// It is possible for our interrupter to stall before getting a
// chance to interrupt us. Let's spin-wait patiently.
if (s == INTERRUPTING)
while (state == INTERRUPTING)
Thread.yield(); // wait out pending interrupt // assert state == INTERRUPTED; // We want to clear any interrupt we may have received from
// cancel(true). However, it is permissible to use interrupts
// as an independent mechanism for a task to communicate with
// its caller, and there is no way to clear only the
// cancellation interrupt.
//
// Thread.interrupted();
}
  • 这是在干嘛呢,是因为,即使我们在上一步通过set或者setException设置了当前task的状态,但可能有别的线程在通过调用cancel来设置当前task的状态,如果有的话,这里就自旋空转,直到cancel方法执行结束。
  • 那cancel方法是怎么工作的呢
public boolean cancel(boolean mayInterruptIfRunning) {
if (!(state == NEW &&
UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
return false;
try { // in case call to interrupt throws exception
if (mayInterruptIfRunning) {
try {
Thread t = runner;
if (t != null)
t.interrupt();
} finally { // final state
UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
}
}
} finally {
finishCompletion();
}
return true;
}
  • cancel方法其实就是通过找到执行当前task的runner,然后调用thread的interrupt方法,这里需要注意的是,thread.interrupt方法仅仅是设置一个标志位,具体线程有没有响应,要看自己的实现。反正这里就是调一把interrupt然后就走了,然后通知所有watch的线程。
  • watch的线程,通过get方法获得执行结果是怎么拿到的呢
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
} int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
}
  • 核心逻辑就是,先把自己这个线程放到watch的waitNodes栈中,然后park 等待,直到task的状态>COMPLETING.

reference

FutureTask相关的更多相关文章

  1. java-concurrent包

    通常所说的concurrent包基本有3个package组成 java.util.concurrent:提供大部分关于并发的接口和类,如BlockingQueue,Callable,Concurren ...

  2. java线程池和中断总结

    目录 java线程池和中断总结 一. 线程池的使用 二. java中断机制 中断的处理 三. 线程间通信机制总结 java线程池和中断总结 本系列文是对自己学习多线程和平时使用过程中的知识梳理,不适合 ...

  3. Java并发之——线程池

    一. 线程池介绍 1.1 简介 线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务.线程池的基本思想还是一种对象池的思想,开辟一块内存空间,里面存放了众多(未死亡 ...

  4. Future 异步回调 大起底之 Java Future 与 Guava Future

    目录 写在前面 1. Future模式异步回调大起底 1.1. 从泡茶的案例说起 1.2. 何为异步回调 1.2.1. 同步.异步.阻塞.非阻塞 1.2.2. 阻塞模式的泡茶案例图解 1.2.3. 回 ...

  5. 嵌入式单片机STM32应用技术(课本)

    目录SAIU R20 1 6 第1页第1 章. 初识STM32..................................................................... ...

  6. maven工程打包出现Test相关的错误

    ----------------------------------------------------- T E S T S ------------------------------------ ...

  7. android相关技能

    深读: 如:View.ViewGroup.AdapterView.ListView.GridView.Window.ViewDragHelper.ItemTouchHelper.SurfaceView ...

  8. Callable, Runnable, Future, FutureTask

    Java并发编程之Callable, Runnable, Future, FutureTask Java中存在Callable, Runnable, Future, FutureTask这几个与线程相 ...

  9. 多线程并发执行任务,取结果归集。终极总结:Future、FutureTask、CompletionService、CompletableFuture

    目录 1.Futrue 2.FutureTask 3.CompletionService 4.CompletableFuture 5.总结 ================正文分割线========= ...

随机推荐

  1. 关于__new__和__call__的想法

    __new__和__call__很像,两个都是用来产生对象的 __new__用来产生的对象是'类',class 时触发(不是) __call__用来产生的对象是'对象',这种对象无法继续产生对象,但是 ...

  2. 8.Linux的目录管理

    3 Linux目录管理 3.1 Linux 文件与目录管理 3.1.1 目录常用命令 ls: 列出目录 cd: 切换目录 pwd: 显示目前的目录 mkdir:创建一个新的目录 rmdir:删除一个空 ...

  3. CSS中的颜色、长度、角度、时间

    一.颜色的表示方法 颜色是通过对红.绿和蓝光的组合来显示的. 1.颜色名 1 <!DOCTYPE html> 2 <html lang="en"> 3 &l ...

  4. sprintf和snprintf函数

    printf()/sprintf()/snprintf()区别  先贴上其函数原型 printf( const char *format, ...)    格式化输出字符串,默认输出到终端-----s ...

  5. 6.5 scp:远程文件复制

    scp命令 用于在不同的主机之间复制文件,它采用SSH协议来保证复制的安全性.scp命令每次都是全量完整复制,因此效率不高,适合第一次复制时使用,增量复制建议使用rsync命令替代.     scp ...

  6. 三大主流开源硬件对比:Arduino vs Raspberry Pi vs BeagleBone

    http://www.elecfans.com/emb/361236_3.html 下文摘自上面的链接 软硬件整合是今年一再被提及的话题,如今我们也可以看到不少硬件创业的成功案例,比如Jawbone ...

  7. 【Dubbo】SPI

    什么是SPI SPI是JDK内置的一种服务提供发现机制.目前市面上很多框架都用它来做服务的扩展发现.简单的说,它是一种动态替换发现的机制. jdk 实现方式 需要在 classpath 下创建一个目录 ...

  8. Python+Selenium学习笔记17 - HTML测试报告

    运行少量case时 1 # coding = utf-8 2 3 from selenium import webdriver 4 import unittest 5 import time 6 fr ...

  9. 深度学习白平衡(Color Constancy,AWB):ICCV2019论文解析

    深度学习白平衡(Color Constancy,AWB):ICCV2019论文解析 What Else Can Fool Deep Learning? Addressing Color Constan ...

  10. CUDA C编程接口技术分析

    CUDA C编程接口技术分析 编程接口 CUDA C为熟悉C编程语言的用户提供了一个简单的路径,可以方便地编写程序供设备执行. 它由C语言的最小扩展集和运行库组成. 核心语言扩展已经引入:cuda c ...