首先我们可以把所有位置都变为1,因此不妨假设$a\le b$

一个字符串$s$合法当且仅当:将其中每一段长度不小于$a$的0变成1后,存在一段1的长度都不小于$b$

证明:我们称$S_{a,b}$为通过$(a,b)$能产生的字符串所构成的集合,则有$S_{a,b}=S_{b,a}$

称原来的字符串为$s$,将每一段长度不小于$a$的0变成1后称为$s'$,则若$s'\in S_{a,b}$则可以得到$s\in S_{a,b}$,同时若有$s\in S_{b,a}$又可以得到$s'\in S_{b,a}$,即可得$s\in S_{a,b}$等价于$s'\in S_{a,b}$

接下来,就是证明$s'\in S_{a,b}$当且仅当存在一段1的长度都不小于$b$

必要性:考虑$s'$中不存在一段0的长度不小于$a$,又不存在一段1的长度不小于$b$,对最后一次操作分类讨论即可(初始$n\ge a,b$,也满足条件)

充分性:将长度不小于$b$的一段1变为0,则若可以得到这个串则一定可以得到$s'$,然后由于$b\ge a$,再把这段0和左右两边原来的0合并起来,长度不小于$a$,根据上面的结论,可以将这一段变为1

重复此操作,每一次操作必然减少一段0,因此最终即所有位置都为1,显然可以做到

统计不合法的字符串数量,假设已经确定$s'$,去统计对应为$s'$的$s$数量,考虑dp

预处理出用$g_{l}$表示将这段1中若干个位置改为0,且每一段0的长度都不小于$a$的方案数,再用用$f_{i,0/1}$表示前$i$个数,第$i$个数为0或1,简单转移即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 5005
4 #define mod 1000000007
5 int n,a,b,ans,g[N],f[N][N];
6 int main(){
7 scanf("%d%d%d",&n,&a,&b);
8 if (a>b)swap(a,b);
9 for(int i=0;i<a;i++)g[i]=1;
10 for(int i=a;i<=n;i++){
11 g[i]=(g[i-1]+1)%mod;
12 for(int j=a;j<i;j++)g[i]=(g[i]+g[i-j-1])%mod;
13 }
14 f[0][0]=f[0][1]=1;
15 for(int i=1;i<=n;i++)
16 for(int j=0;j<i;j++)
17 if (i-j<b){
18 int l=i-j-2;
19 if (!j)l++;
20 if (i==n)l++;
21 f[i][1]=(f[i][1]+1LL*f[j][0]*g[max(l,0)])%mod;
22 if (i-j<a)f[i][0]=(f[i][0]+f[j][1])%mod;
23 }
24 ans=1;
25 for(int i=0;i<n;i++)ans=ans*2%mod;
26 ans=(ans+mod-(f[n][0]+f[n][1])%mod)%mod;
27 printf("%d",ans);
28 }

[atAGC045C]Range Set的更多相关文章

  1. SQL Server 合并复制遇到identity range check报错的解决

        最近帮一个客户搭建跨洋的合并复制,由于数据库非常大,跨洋网络条件不稳定,因此只能通过备份初始化,在初始化完成后向海外订阅端插入数据时发现报出如下错误: Msg 548, Level 16, S ...

  2. Java 位运算2-LeetCode 201 Bitwise AND of Numbers Range

    在Java位运算总结-leetcode题目博文中总结了Java提供的按位运算操作符,今天又碰到LeetCode中一道按位操作的题目 Given a range [m, n] where 0 <= ...

  3. [LeetCode] Range Addition 范围相加

    Assume you have an array of length n initialized with all 0's and are given k update operations. Eac ...

  4. [LeetCode] Count of Range Sum 区间和计数

    Given an integer array nums, return the number of range sums that lie in [lower, upper] inclusive.Ra ...

  5. [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  6. [LeetCode] Range Sum Query - Mutable 区域和检索 - 可变

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  7. [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  8. [LeetCode] Range Sum Query - Immutable 区域和检索 - 不可变

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  9. [LeetCode] Bitwise AND of Numbers Range 数字范围位相与

    Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers ...

随机推荐

  1. hibernate不同条件查询结果集一样,主键@ID的原因

    这一周在翻新公司的老项目,遇到了一些预想不到的事情. 其中一个是,使用hibernate查询,不同的查询条件,居然都查到同一条记录,感觉奇怪了,开始以为是session的原因: 后来发现是hibern ...

  2. 1. SSTI(模板注入)漏洞(入门篇)

    好久没更新博客了,现在主要在作源码审计相关工作,在工作中也遇到了各种语言导致的一些SSTI,今天就来大概说一下SSTI模板注入这个老生常谈的漏洞 前言 模板引擎 模板引擎(这里特指用于Web开发的模板 ...

  3. 2021.1.28--vj补题

    B - B CodeForces - 994B 题内容: Unlike Knights of a Round Table, Knights of a Polygonal Table deprived ...

  4. javascript高级程序设计第三版书摘

    在HTML 中使用JavaScript <script>元素 在使用<script>元素嵌入 JavaScript 代码时,只须为<script>指定 type 属 ...

  5. 【Spring】IoC容器 - 依赖注入

    前言 上一篇文章已经学习了[依赖查找]相关的知识,这里详细的介绍一下[依赖注入]. 依赖注入 - 分类 因为自己是基于小马哥的脉络来学习,并且很认可小马哥梳理的分类方式,下面按照小马哥思想为[依赖注入 ...

  6. django通过管理页上传图片

    1.配置目录 新建上传录.static/medis 2.设置上传文件保存路径 # setting.py中设置上传文件路径static/media MEDIA_ROOT = os.path.join(B ...

  7. MarkDown之Typora使用

    Typora:所见即所得 常用快捷键 加粗:ctrl + B 标题:ctrl + 16,对于与16级标题 插入公式:ctrl + Shift + m 插入代码:ctrl + Shift + K 插入图 ...

  8. pyinstaller和wordcloud和jieba的使用案列

    一.pyinstaller库 1.简介 pyinstaller库:将脚本程序转变为可执行(.exe)格式的第三方库 注意:需要在.py文件所在目录进行以下命令,图标扩展名是.ico 2.格式: pyi ...

  9. oracle物化视图创建及删除

    --删除物化表的日志表 DROP MATERIALIZED VIEW LOG ON 表名; --为将要创建物化视图的表添加带主键的日志表 CREATE MATERIALIZED VIEW LOG ON ...

  10. Spring:面向切面编程的AOP

    一.前言 除了依赖注入(DI),Spring框架提供的另一个核心功能是对面向方面的编程(AOP)的支持. AOP通常被称为实现横切关注点的工具.横切关注点一词是指应用程序中的逻辑不能与应用程序的其余部 ...