有一个很重要的性质:若$a\le b$且$c\le d$,则$ac\le bd$

根据这一性质,就可以利用单调性$o(n)$求出小于$a_{x}\cdot b_{y}$的数的个数(先要对$a$和$b$排序)

考虑二分答案,假设答案$ans$满足$l\le ans\le r$,枚举$a_{i}$,利用单调性求出使得$l\le a_{i}\cdot b_{j}\le r$中间的$j$的区间,之后在所有数中随机选择一个作为$mid$,然后统计出比其小的数个数并与$k$判断

考虑时间复杂度,设对于$l$个数,答案为第$k$个,期望变短的长度为$\frac{k^{2}+(l-k)^{2}}{2l}\ge \frac{l}{4}$,即长度期望变为$o(\frac{3}{4}l)$,那么复杂度就是$o(\log_{\frac{4}{3}}nm)=o(\log_{2}mn)=o(\log_{2}n)$

最终时间复杂度为$o(n\sqrt{v}+n\log_{2}n(\log_{2}n+\log_{2}v))$(其中$v$为权值范围,后面的$\log_{2}v$为排序复杂度)

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 struct ji{
5 vector<int>v;
6 bool operator < (const ji &k){
7 int s=min(v.size(),k.v.size());
8 for(int i=0;i<s;i++)
9 if (v[i]!=k.v[i])return v[i]>k.v[i];
10 return v.size()<k.v.size();
11 }
12 bool operator == (const ji &k){
13 if (v.size()!=k.v.size())return 0;
14 for(int i=0;i<v.size();i++)
15 if (v[i]!=k.v[i])return 0;
16 return 1;
17 }
18 }o,a[N],b[N];
19 int t,n,m,x,y,st[N],ed[N];
20 long long k;
21 ji div(int k){
22 o.v.clear();
23 for(int i=2;i*i<=k;i++)
24 while (k%i==0){
25 k/=i;
26 o.v.push_back(i);
27 }
28 if (k>1)o.v.push_back(k);
29 return o;
30 }
31 ji merge(ji x,ji y){
32 o.v.clear();
33 for(int i=0,j=0;(i<x.v.size())||(j<y.v.size());)
34 if ((i!=x.v.size())&&((j==y.v.size())||(x.v[i]<y.v[j])))o.v.push_back(x.v[i++]);
35 else o.v.push_back(y.v[j++]);
36 return o;
37 }
38 int query(ji k){
39 int ans=0;
40 for(int i=1,j=m;i<=n;i++){
41 while ((j)&&(k<merge(a[i],b[j])))j--;
42 ans+=j;
43 }
44 return ans;
45 }
46 int sum(ji k){
47 int ans=0;
48 for(int i=1,j=m;i<=n;i++){
49 while ((j)&&(k<merge(a[i],b[j])))j--;
50 int s_i=i,s_j=j;
51 while ((j)&&(k==merge(a[s_i],b[j])))j--;
52 while ((i)&&(k==merge(a[i],b[s_j])))i++;
53 ans+=(i-s_i)*(s_j-j);
54 }
55 return ans;
56 }
57 long long calc(ji k){
58 long long ans=1;
59 for(int i=0;i<k.v.size();i++)ans*=k.v[i];
60 return ans;
61 }
62 int main(){
63 srand(time(0));
64 scanf("%d",&t);
65 while (t--){
66 scanf("%d%d%lld",&n,&m,&k);
67 for(int i=1;i<=n;i++){
68 scanf("%d",&x);
69 a[i]=div(x);
70 }
71 for(int i=1;i<=m;i++){
72 scanf("%d",&x);
73 b[i]=div(x);
74 }
75 sort(a+1,a+n+1);
76 sort(b+1,b+m+1);
77 ji l=merge(a[1],b[1]),r=merge(a[n],b[n]);
78 while (1){
79 int tot=0;
80 st[0]=ed[0]=m;
81 for(int i=1;i<=n;i++){
82 st[i]=st[i-1];
83 while ((st[i]>1)&&(!(merge(a[i],b[st[i]-1])<l)))st[i]--;
84 ed[i]=ed[i-1];
85 while ((ed[i])&&(r<merge(a[i],b[ed[i]])))ed[i]--;
86 tot+=ed[i]-st[i]+1;
87 }
88 if (tot==sum(l)+sum(r))break;
89 tot=rand()%tot+1;
90 for(int i=1;i<=n;i++)
91 if (ed[i]-st[i]+1<tot)tot-=ed[i]-st[i]+1;
92 else{
93 x=i;
94 y=st[i]+tot-1;
95 break;
96 }
97 ji mid=merge(a[x],b[y]);
98 if (query(mid)<=k)l=mid;
99 else r=mid;
100 }
101 long long ans=1;
102 for(int i=0;i<l.v.size();i++)ans*=l.v[i];
103 printf("%lld\n",ans);
104 }
105 }

[gym102770L]List of Products的更多相关文章

  1. Building third-party products of OpenCascade

    Building third-party products of OpenCascade eryar@163.com Available distributives of third-party pr ...

  2. SharePoint Configuration Wizard - Unable to upgrade SharePoint Products and Technologies because an upgrade is already in progress

    故障描述 当要运行SharePonit Products and Technologies Configuration Wizard的时候,出现了如下图所示的错误提示. 错误信息为: Unable t ...

  3. Registry values for ProductID and LocaleID for AutoCAD and the vertical products

    原文地址:http://adndevblog.typepad.com/autocad/2013/08/registry-values-for-productid-and-localeid-for-au ...

  4. magento添加多个产品到购物车(Add multiple products to cart )

    Step  1app\design\frontend\base\default\template\catalog\product\list.phtml<?php    $_productColl ...

  5. FVDI Commander products be replaced SVDI tools,really?

    You may have heard that some FVDI Commander products are being replaced by the new SVDI tools. This ...

  6. 读书笔记-《Training Products of Experts by Minimizing Contrastive Divergence》

    Training Products of Experts by Minimizing Contrastive Divergence(以下简称 PoE)是 DBN 和深度学习理论的 肇始之篇,最近在爬梳 ...

  7. /users/products.:format 这种写法的其对应解析字符写法

    “products.:format" 这种写法可以有对应的下面两种路由形式 /products.json /products.xml "products.:format?" ...

  8. Amazon.com: NEW VI AND VIM EDITOR KEYBOARD STICKER: Office Products

    Amazon.com: NEW VI AND VIM EDITOR KEYBOARD STICKER: Office Products NEW VI AND VIM EDITOR KEYBOARD S ...

  9. Popular Products

    Popular Products 描述 Given N lists of customer purchase, your task is to find the products that appea ...

随机推荐

  1. Cobar提出的一种在分库场景下对Order By / Limit 的优化

    搜索关注微信公众号"捉虫大师",后端技术分享,架构设计.性能优化.源码阅读.问题排查.踩坑实践. 本文已收录 https://github.com/lkxiaolou/lkxiao ...

  2. nGrinder 参数使用

    背景: 性能测试中为了更加接近真实模拟现实应用,对于提交的信息每次都需要提交不同的数据,或使用不同的值,最为典型的就是登录时的账号. 性能测试工具需要提供动态参数化功能,如商业化的LoadRunner ...

  3. spoj839 Optimal Marks(最小割,dinic)

    题目大意: 给你一个无向图\(G(V,E)\). 每个顶点都有一个int范围内的整数的标记. 不同的顶点可能有相同的标记. 对于边\((u,v)\),我们定义\(Cost(u,v)=mark [u]\ ...

  4. 4.14——208. 实现 Trie (前缀树)

    前缀树(字典树)是经典的数据结构,以下图所示: 本来处理每个节点的子节点集合需要用到set,但是因为输入规定了只有26个小写字母,可以直接用一个[26]的数组来存储. 关于ASCII代码: Java ...

  5. 为Kubernetes集群添加用户认证

    Kubernetes中的用户 K8S中有两种用户(User)--服务账号(ServiceAccount)和普通意义上的用户(User) ServiceAccount是由K8S管理的,而User通常是在 ...

  6. 机器学习:SVM

    SVM 前言:支持向量机(Support Vector Machine, SVM),作为最富盛名的机器学习算法之一,其本身是一个二元分类算法,为了更好的了解SVM,首先需要一些前提知识,例如:梯度下降 ...

  7. 航胥:北航教务助手——Beta阶段发布声明

    下载地址在文章末尾! 这里是"航胥",一款更想要了解你的北航教务助手 Beta阶段,我们进化了! Beta阶段我们的新功能有: 课程评价功能 所有用户选过的课程都会在课程评价页面进 ...

  8. [no code][scrum meeting] Beta 8

    $( "#cnblogs_post_body" ).catalog() 例会时间:5月22日15:30,主持者:赵涛 下次例会时间:5月23日11:30,主持者:肖思炀 一.工作汇 ...

  9. 运维常用python库&模块

    sutil:是一个跨平台库(https://github.com/giampaolo/psutil)能够实现获取系统运行的进程和系统利用率(内存,CPU,磁盘,网络等),主要用于系统监控,分析和系统资 ...

  10. Canal的简单使用

    Canal的简单实用 一.背景 二.canal的工作原理 三.安装canal 1.mysql配置相关 1.检测binlog是否开启 2.mysql开启binlog 3.创建canal用户 2.cana ...