[gym102770L]List of Products
有一个很重要的性质:若$a\le b$且$c\le d$,则$ac\le bd$
根据这一性质,就可以利用单调性$o(n)$求出小于$a_{x}\cdot b_{y}$的数的个数(先要对$a$和$b$排序)
考虑二分答案,假设答案$ans$满足$l\le ans\le r$,枚举$a_{i}$,利用单调性求出使得$l\le a_{i}\cdot b_{j}\le r$中间的$j$的区间,之后在所有数中随机选择一个作为$mid$,然后统计出比其小的数个数并与$k$判断
考虑时间复杂度,设对于$l$个数,答案为第$k$个,期望变短的长度为$\frac{k^{2}+(l-k)^{2}}{2l}\ge \frac{l}{4}$,即长度期望变为$o(\frac{3}{4}l)$,那么复杂度就是$o(\log_{\frac{4}{3}}nm)=o(\log_{2}mn)=o(\log_{2}n)$
最终时间复杂度为$o(n\sqrt{v}+n\log_{2}n(\log_{2}n+\log_{2}v))$(其中$v$为权值范围,后面的$\log_{2}v$为排序复杂度)

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 struct ji{
5 vector<int>v;
6 bool operator < (const ji &k){
7 int s=min(v.size(),k.v.size());
8 for(int i=0;i<s;i++)
9 if (v[i]!=k.v[i])return v[i]>k.v[i];
10 return v.size()<k.v.size();
11 }
12 bool operator == (const ji &k){
13 if (v.size()!=k.v.size())return 0;
14 for(int i=0;i<v.size();i++)
15 if (v[i]!=k.v[i])return 0;
16 return 1;
17 }
18 }o,a[N],b[N];
19 int t,n,m,x,y,st[N],ed[N];
20 long long k;
21 ji div(int k){
22 o.v.clear();
23 for(int i=2;i*i<=k;i++)
24 while (k%i==0){
25 k/=i;
26 o.v.push_back(i);
27 }
28 if (k>1)o.v.push_back(k);
29 return o;
30 }
31 ji merge(ji x,ji y){
32 o.v.clear();
33 for(int i=0,j=0;(i<x.v.size())||(j<y.v.size());)
34 if ((i!=x.v.size())&&((j==y.v.size())||(x.v[i]<y.v[j])))o.v.push_back(x.v[i++]);
35 else o.v.push_back(y.v[j++]);
36 return o;
37 }
38 int query(ji k){
39 int ans=0;
40 for(int i=1,j=m;i<=n;i++){
41 while ((j)&&(k<merge(a[i],b[j])))j--;
42 ans+=j;
43 }
44 return ans;
45 }
46 int sum(ji k){
47 int ans=0;
48 for(int i=1,j=m;i<=n;i++){
49 while ((j)&&(k<merge(a[i],b[j])))j--;
50 int s_i=i,s_j=j;
51 while ((j)&&(k==merge(a[s_i],b[j])))j--;
52 while ((i)&&(k==merge(a[i],b[s_j])))i++;
53 ans+=(i-s_i)*(s_j-j);
54 }
55 return ans;
56 }
57 long long calc(ji k){
58 long long ans=1;
59 for(int i=0;i<k.v.size();i++)ans*=k.v[i];
60 return ans;
61 }
62 int main(){
63 srand(time(0));
64 scanf("%d",&t);
65 while (t--){
66 scanf("%d%d%lld",&n,&m,&k);
67 for(int i=1;i<=n;i++){
68 scanf("%d",&x);
69 a[i]=div(x);
70 }
71 for(int i=1;i<=m;i++){
72 scanf("%d",&x);
73 b[i]=div(x);
74 }
75 sort(a+1,a+n+1);
76 sort(b+1,b+m+1);
77 ji l=merge(a[1],b[1]),r=merge(a[n],b[n]);
78 while (1){
79 int tot=0;
80 st[0]=ed[0]=m;
81 for(int i=1;i<=n;i++){
82 st[i]=st[i-1];
83 while ((st[i]>1)&&(!(merge(a[i],b[st[i]-1])<l)))st[i]--;
84 ed[i]=ed[i-1];
85 while ((ed[i])&&(r<merge(a[i],b[ed[i]])))ed[i]--;
86 tot+=ed[i]-st[i]+1;
87 }
88 if (tot==sum(l)+sum(r))break;
89 tot=rand()%tot+1;
90 for(int i=1;i<=n;i++)
91 if (ed[i]-st[i]+1<tot)tot-=ed[i]-st[i]+1;
92 else{
93 x=i;
94 y=st[i]+tot-1;
95 break;
96 }
97 ji mid=merge(a[x],b[y]);
98 if (query(mid)<=k)l=mid;
99 else r=mid;
100 }
101 long long ans=1;
102 for(int i=0;i<l.v.size();i++)ans*=l.v[i];
103 printf("%lld\n",ans);
104 }
105 }
[gym102770L]List of Products的更多相关文章
- Building third-party products of OpenCascade
Building third-party products of OpenCascade eryar@163.com Available distributives of third-party pr ...
- SharePoint Configuration Wizard - Unable to upgrade SharePoint Products and Technologies because an upgrade is already in progress
故障描述 当要运行SharePonit Products and Technologies Configuration Wizard的时候,出现了如下图所示的错误提示. 错误信息为: Unable t ...
- Registry values for ProductID and LocaleID for AutoCAD and the vertical products
原文地址:http://adndevblog.typepad.com/autocad/2013/08/registry-values-for-productid-and-localeid-for-au ...
- magento添加多个产品到购物车(Add multiple products to cart )
Step 1app\design\frontend\base\default\template\catalog\product\list.phtml<?php $_productColl ...
- FVDI Commander products be replaced SVDI tools,really?
You may have heard that some FVDI Commander products are being replaced by the new SVDI tools. This ...
- 读书笔记-《Training Products of Experts by Minimizing Contrastive Divergence》
Training Products of Experts by Minimizing Contrastive Divergence(以下简称 PoE)是 DBN 和深度学习理论的 肇始之篇,最近在爬梳 ...
- /users/products.:format 这种写法的其对应解析字符写法
“products.:format" 这种写法可以有对应的下面两种路由形式 /products.json /products.xml "products.:format?" ...
- Amazon.com: NEW VI AND VIM EDITOR KEYBOARD STICKER: Office Products
Amazon.com: NEW VI AND VIM EDITOR KEYBOARD STICKER: Office Products NEW VI AND VIM EDITOR KEYBOARD S ...
- Popular Products
Popular Products 描述 Given N lists of customer purchase, your task is to find the products that appea ...
随机推荐
- Cobar提出的一种在分库场景下对Order By / Limit 的优化
搜索关注微信公众号"捉虫大师",后端技术分享,架构设计.性能优化.源码阅读.问题排查.踩坑实践. 本文已收录 https://github.com/lkxiaolou/lkxiao ...
- nGrinder 参数使用
背景: 性能测试中为了更加接近真实模拟现实应用,对于提交的信息每次都需要提交不同的数据,或使用不同的值,最为典型的就是登录时的账号. 性能测试工具需要提供动态参数化功能,如商业化的LoadRunner ...
- spoj839 Optimal Marks(最小割,dinic)
题目大意: 给你一个无向图\(G(V,E)\). 每个顶点都有一个int范围内的整数的标记. 不同的顶点可能有相同的标记. 对于边\((u,v)\),我们定义\(Cost(u,v)=mark [u]\ ...
- 4.14——208. 实现 Trie (前缀树)
前缀树(字典树)是经典的数据结构,以下图所示: 本来处理每个节点的子节点集合需要用到set,但是因为输入规定了只有26个小写字母,可以直接用一个[26]的数组来存储. 关于ASCII代码: Java ...
- 为Kubernetes集群添加用户认证
Kubernetes中的用户 K8S中有两种用户(User)--服务账号(ServiceAccount)和普通意义上的用户(User) ServiceAccount是由K8S管理的,而User通常是在 ...
- 机器学习:SVM
SVM 前言:支持向量机(Support Vector Machine, SVM),作为最富盛名的机器学习算法之一,其本身是一个二元分类算法,为了更好的了解SVM,首先需要一些前提知识,例如:梯度下降 ...
- 航胥:北航教务助手——Beta阶段发布声明
下载地址在文章末尾! 这里是"航胥",一款更想要了解你的北航教务助手 Beta阶段,我们进化了! Beta阶段我们的新功能有: 课程评价功能 所有用户选过的课程都会在课程评价页面进 ...
- [no code][scrum meeting] Beta 8
$( "#cnblogs_post_body" ).catalog() 例会时间:5月22日15:30,主持者:赵涛 下次例会时间:5月23日11:30,主持者:肖思炀 一.工作汇 ...
- 运维常用python库&模块
sutil:是一个跨平台库(https://github.com/giampaolo/psutil)能够实现获取系统运行的进程和系统利用率(内存,CPU,磁盘,网络等),主要用于系统监控,分析和系统资 ...
- Canal的简单使用
Canal的简单实用 一.背景 二.canal的工作原理 三.安装canal 1.mysql配置相关 1.检测binlog是否开启 2.mysql开启binlog 3.创建canal用户 2.cana ...