有一个很重要的性质:若$a\le b$且$c\le d$,则$ac\le bd$

根据这一性质,就可以利用单调性$o(n)$求出小于$a_{x}\cdot b_{y}$的数的个数(先要对$a$和$b$排序)

考虑二分答案,假设答案$ans$满足$l\le ans\le r$,枚举$a_{i}$,利用单调性求出使得$l\le a_{i}\cdot b_{j}\le r$中间的$j$的区间,之后在所有数中随机选择一个作为$mid$,然后统计出比其小的数个数并与$k$判断

考虑时间复杂度,设对于$l$个数,答案为第$k$个,期望变短的长度为$\frac{k^{2}+(l-k)^{2}}{2l}\ge \frac{l}{4}$,即长度期望变为$o(\frac{3}{4}l)$,那么复杂度就是$o(\log_{\frac{4}{3}}nm)=o(\log_{2}mn)=o(\log_{2}n)$

最终时间复杂度为$o(n\sqrt{v}+n\log_{2}n(\log_{2}n+\log_{2}v))$(其中$v$为权值范围,后面的$\log_{2}v$为排序复杂度)

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 struct ji{
5 vector<int>v;
6 bool operator < (const ji &k){
7 int s=min(v.size(),k.v.size());
8 for(int i=0;i<s;i++)
9 if (v[i]!=k.v[i])return v[i]>k.v[i];
10 return v.size()<k.v.size();
11 }
12 bool operator == (const ji &k){
13 if (v.size()!=k.v.size())return 0;
14 for(int i=0;i<v.size();i++)
15 if (v[i]!=k.v[i])return 0;
16 return 1;
17 }
18 }o,a[N],b[N];
19 int t,n,m,x,y,st[N],ed[N];
20 long long k;
21 ji div(int k){
22 o.v.clear();
23 for(int i=2;i*i<=k;i++)
24 while (k%i==0){
25 k/=i;
26 o.v.push_back(i);
27 }
28 if (k>1)o.v.push_back(k);
29 return o;
30 }
31 ji merge(ji x,ji y){
32 o.v.clear();
33 for(int i=0,j=0;(i<x.v.size())||(j<y.v.size());)
34 if ((i!=x.v.size())&&((j==y.v.size())||(x.v[i]<y.v[j])))o.v.push_back(x.v[i++]);
35 else o.v.push_back(y.v[j++]);
36 return o;
37 }
38 int query(ji k){
39 int ans=0;
40 for(int i=1,j=m;i<=n;i++){
41 while ((j)&&(k<merge(a[i],b[j])))j--;
42 ans+=j;
43 }
44 return ans;
45 }
46 int sum(ji k){
47 int ans=0;
48 for(int i=1,j=m;i<=n;i++){
49 while ((j)&&(k<merge(a[i],b[j])))j--;
50 int s_i=i,s_j=j;
51 while ((j)&&(k==merge(a[s_i],b[j])))j--;
52 while ((i)&&(k==merge(a[i],b[s_j])))i++;
53 ans+=(i-s_i)*(s_j-j);
54 }
55 return ans;
56 }
57 long long calc(ji k){
58 long long ans=1;
59 for(int i=0;i<k.v.size();i++)ans*=k.v[i];
60 return ans;
61 }
62 int main(){
63 srand(time(0));
64 scanf("%d",&t);
65 while (t--){
66 scanf("%d%d%lld",&n,&m,&k);
67 for(int i=1;i<=n;i++){
68 scanf("%d",&x);
69 a[i]=div(x);
70 }
71 for(int i=1;i<=m;i++){
72 scanf("%d",&x);
73 b[i]=div(x);
74 }
75 sort(a+1,a+n+1);
76 sort(b+1,b+m+1);
77 ji l=merge(a[1],b[1]),r=merge(a[n],b[n]);
78 while (1){
79 int tot=0;
80 st[0]=ed[0]=m;
81 for(int i=1;i<=n;i++){
82 st[i]=st[i-1];
83 while ((st[i]>1)&&(!(merge(a[i],b[st[i]-1])<l)))st[i]--;
84 ed[i]=ed[i-1];
85 while ((ed[i])&&(r<merge(a[i],b[ed[i]])))ed[i]--;
86 tot+=ed[i]-st[i]+1;
87 }
88 if (tot==sum(l)+sum(r))break;
89 tot=rand()%tot+1;
90 for(int i=1;i<=n;i++)
91 if (ed[i]-st[i]+1<tot)tot-=ed[i]-st[i]+1;
92 else{
93 x=i;
94 y=st[i]+tot-1;
95 break;
96 }
97 ji mid=merge(a[x],b[y]);
98 if (query(mid)<=k)l=mid;
99 else r=mid;
100 }
101 long long ans=1;
102 for(int i=0;i<l.v.size();i++)ans*=l.v[i];
103 printf("%lld\n",ans);
104 }
105 }

[gym102770L]List of Products的更多相关文章

  1. Building third-party products of OpenCascade

    Building third-party products of OpenCascade eryar@163.com Available distributives of third-party pr ...

  2. SharePoint Configuration Wizard - Unable to upgrade SharePoint Products and Technologies because an upgrade is already in progress

    故障描述 当要运行SharePonit Products and Technologies Configuration Wizard的时候,出现了如下图所示的错误提示. 错误信息为: Unable t ...

  3. Registry values for ProductID and LocaleID for AutoCAD and the vertical products

    原文地址:http://adndevblog.typepad.com/autocad/2013/08/registry-values-for-productid-and-localeid-for-au ...

  4. magento添加多个产品到购物车(Add multiple products to cart )

    Step  1app\design\frontend\base\default\template\catalog\product\list.phtml<?php    $_productColl ...

  5. FVDI Commander products be replaced SVDI tools,really?

    You may have heard that some FVDI Commander products are being replaced by the new SVDI tools. This ...

  6. 读书笔记-《Training Products of Experts by Minimizing Contrastive Divergence》

    Training Products of Experts by Minimizing Contrastive Divergence(以下简称 PoE)是 DBN 和深度学习理论的 肇始之篇,最近在爬梳 ...

  7. /users/products.:format 这种写法的其对应解析字符写法

    “products.:format" 这种写法可以有对应的下面两种路由形式 /products.json /products.xml "products.:format?" ...

  8. Amazon.com: NEW VI AND VIM EDITOR KEYBOARD STICKER: Office Products

    Amazon.com: NEW VI AND VIM EDITOR KEYBOARD STICKER: Office Products NEW VI AND VIM EDITOR KEYBOARD S ...

  9. Popular Products

    Popular Products 描述 Given N lists of customer purchase, your task is to find the products that appea ...

随机推荐

  1. 洛谷2151[SDOI2009]HH去散步(dp+矩阵乘法优化)

    一道良好的矩阵乘法优化\(dp\)的题. 首先,一个比较\(naive\)的想法. 我们定义\(dp[i][j]\)表示已经走了\(i\)步,当前在点\(j\)的方案数. 由于题目中限制了不能立即走之 ...

  2. 洛谷3244 落忆枫音 (拓扑图dp+式子)

    题目大意就是 给你一个DAG 然后添加一条边\(x->y\) ,询问以1为根的生成树的个数 QWQ 首先假设没有添加的边 答案就应该是 \[ans=\prod_{i=1}^{n} in[i] \ ...

  3. iOS平台 | 快速集成华为AGC认证服务

    介绍 如何让用户根据已有的账号来进行登录注册呢?在应用中集成华为AGC认证服务SDK来轻松快速地实现这个功能. 本篇内容根据官网文档指导集成过程总结完成,关于集成步骤,官网的资料写的有点多,现在我总结 ...

  4. NC105 二分查找法

    二分查找(一) 二分查找看似简单,但是有很多的细节要注意. 题目是牛客NC105,找到有序数组中第一个大于或者等于所查找的数字. 初步写了如下的代码: class Solution { public: ...

  5. 新產品SWOT分析實例

    推出新产品需要解决四个行销支柱: 价格 产品 促销 销售地点 要分析这些方面,请检查您的优势.劣势.机会和威胁,以帮助您在运行第一个广告或举行第一次促销之前将风险降至最低,并最大限度地利用资源.SWO ...

  6. NKOJ-2936 城市建设

    问题描述: PS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁.Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费.Louis希望建造最少的道路使得国 ...

  7. 计算机中的contex理解

    原文链接  https://www.xuebuyuan.com/2016635.html 1.其实简单的说就是跟当前主题有关的所有内容. 2.如说到程序的上下文,就是当前这段程序之上和之下的程序段.因 ...

  8. uvm_cookbook--DUT-Testbench Connections--Abstract-Concrete Class Connections

    抽象和具体class的连接 An alternative to using a virtual interface handle for DUT to UVM testbench connection ...

  9. C#笔记1__命名空间 / 常量 / object / is、as、...?... :...

    命名空间:namespace Test1{ ... } 引用命名空间:using System; using 别名=命名空间 常量:const double PI=3.14; using System ...

  10. ES6-变量的解构赋值复习+学习

    ES6------变量的解构赋值 由于之前学过ES6的解构赋值,但是只是略看了一点网上的视频,所以今天就看了看ES6对这一部分的详细介绍,然后做一个总结的笔记. 首先,先大概说一下什么是变量的解构赋值 ...