hdu4901 枚举状态(找集合对S(xor) ==T(and))
题意:
给你一个串数字,然后让你在这里面挑取两个集合S ,T,集合的要求是
(1)不能为空
(2)S集合的所有元素必须在T集合的左边
(3)S集合的XOR == T集合的AND
问可以找到多少组这样的集合对。
思路:
两种方法,一个是枚举T集合的第一个元素,或者是枚举S集合的最后一个元素,首先我们开四个数组
sum_xor[1002][2050] 记录从左到右直到第i个节点的时候的j这个数字有多少种可能
now_xor[1002][2050] 记录从左到右直到第i个节点并且必须选择i这个节点时j出现的次数
sum_and[1002][2050] 同理.(只不过是n-->1)..
now_and[1002][2050] 同理. (只不过是n-->1)..
更新数组的时候可以想象下01背包,当前的状态由上一步的所有可能状态和当前的这个数字组合出来后得到的新状态,对于sum_..记得加上上一步的所有状态,这个题目关键就是枚举的时候不能出现重复的集合对。然后我们枚举一遍就ok了,两种枚举方法,第一种是sum_xor,now_and两个状态组合,另一
个是now_xor ,sum_and组合,给个关键的代码
for(i = 1 ;i <= n ;i ++)
{
now_xor[i][num[i]] ++;//自己这个状态
sum_xor[i][num[i]] ++;//自己这个状态
for(j = 0 ;j <= 2048 ;j ++)
{
if(sum_xor[i-1][j])//如果之前有j这个状态
{
now_xor[i][j^num[i]] += sum_xor[i-1][j];//新状态的增加值
sum_xor[i][j^num[i]] += sum_xor[i-1][j];//新状态的增加值
sum_xor[i][j] += sum_xor[i-1][j];//当前的和也要加上之前的所有可能和
//然后都MOD一下
}
}
}
AND的同理...
求出来这4个数组之后的两种枚举方法(两种几乎一样)
(1)枚举T集合的第一个
for(i = 2 ;i <= n ;i ++)
{
for(j = 0 ;j <= 2048 ;j ++)
if(sum_xor[i-1][j] && now_and[i][j])
ans = (sum_xor[i-1][j] * now_and[i][j]) % MOD;
}
(2)枚举S集合的最后一位
for(i = 1 ;i <= n - 1 ;i ++)
{
for(j = 0 ;j <= 2048 ;j ++)
if(now_xor[i-1][j] && sum_and[i][j])
ans = (now_xor[i-1][j] * sum_and[i][j]) % MOD;
}
#include<stdio.h>
#include<string.h> #define MOD (1000000000 + 7)
__int64 sum_xor[1002][2050] ,now_xor[1002][2050];
__int64 sum_and[1002][2050] ,now_and[1002][2050];
__int64 num[1002]; int main ()
{
int i ,j ,n ,t;
scanf("%d" ,&t);
while(t--)
{
scanf("%d" ,&n);
for(i = 1 ;i <= n ;i ++)
scanf("%I64d" ,&num[i]);
memset(sum_xor ,0 ,sizeof(sum_xor));
memset(now_xor ,0 ,sizeof(now_xor));
for(i = 1 ;i <= n ;i ++)
{
sum_xor[i][num[i]] ++;
now_xor[i][num[i]] ++;
for(j = 0 ;j <= 2048 ;j ++)
if(sum_xor[i-1][j])
{
now_xor[i][j^num[i]] += sum_xor[i-1][j];
sum_xor[i][j^num[i]] += sum_xor[i-1][j];
sum_xor[i][j] += sum_xor[i-1][j];
now_xor[i][j^num[i]] %= MOD;
sum_xor[i][j^num[i]] %= MOD;
sum_xor[i][j] %= MOD;
}
}
memset(sum_and ,0 ,sizeof(sum_and));
memset(now_and ,0 ,sizeof(now_and));
for(i = n ;i >= 1 ;i --)
{
sum_and[i][num[i]] ++;
now_and[i][num[i]] ++;
for(j = 0 ;j <= 2048 ;j ++)
if(sum_and[i+1][j])
{
now_and[i][j&num[i]] += sum_and[i+1][j];
sum_and[i][j&num[i]] += sum_and[i+1][j];
sum_and[i][j] += sum_and[i+1][j];
now_and[i][j&num[i]] %= MOD;
sum_and[i][j&num[i]] %= MOD;
sum_and[i][j] %= MOD;
}
}
__int64 ans = 0;
for(i = 2 ;i <= n ;i ++)
{
for(j = 0 ;j <= 2048 ;j ++)
if(sum_xor[i-1][j] && now_and[i][j])
ans = (ans + sum_xor[i-1][j] * now_and[i][j]) % MOD;
}
printf("%I64d\n" ,ans);
}
return 0;
}
hdu4901 枚举状态(找集合对S(xor) ==T(and))的更多相关文章
- { MySQL基础数据类型}一 介绍 二 数值类型 三 日期类型 四 字符串类型 五 枚举类型与集合类型
MySQL基础数据类型 阅读目录 一 介绍 二 数值类型 三 日期类型 四 字符串类型 五 枚举类型与集合类型 一 介绍 存储引擎决定了表的类型,而表内存放的数据也要有不同的类型,每种数据类型都有自己 ...
- 1315E Double Elimination DP 01枚举状态和倍增思想
E. Double Elimination DP 01枚举状态和倍增思想 题意 参考DOTA2双败赛制,一共有\(2^n\)个队打n轮 其中你有k喜欢的队伍,由你掌控比赛的输赢请问比赛中包含你喜欢的队 ...
- 6-12 varchar和char 枚举类型enum 集合set
1 字符类型char和varchar #官网:https://dev.mysql.com/doc/refman/5.7/en/char.html #注意:char和varchar括号内的参 ...
- Mysql数据类型《三》枚举类型与集合类型
枚举类型与集合类型 字段的值只能在给定范围中选择,如单选框,多选框 enum 单选 只能在给定的范围内选一个值,如性别 sex 男male/女female set 多选 在给定的范围内可以选择一个或一 ...
- mysql枚举类型与集合类型
枚举类型与集合类型 字段的值只能在给定范围中选择,如单选框,多选框 enum 单选 只能在给定的范围内选一个值,如性别 sex 男male/女female set 多选 在给定的范围内可以选择一个或一 ...
- 【POJ 2411】【Mondriaans Dream】 状压dp+dfs枚举状态
题意: 给你一个高为h,宽为w的矩阵,你需要用1*2或者2*1的矩阵填充它 问你能有多少种填充方式 题解: 如果一个1*2的矩形横着放,那么两个位置都用二进制1来表示,如果是竖着放,那么会对下一层造成 ...
- Delphi基本类型--枚举 子界 集合 数组
[plain] view plain copy <strong>根据枚举定义集合 </strong> TMyColor = (mcBlue, mcRed); TMyColorS ...
- Http状态码集合
忘了之前在哪里收集的了,先表示感谢. 状态码 含义 100 客户端应当继续发送请求.这个临时响应是用来通知客户端它的部分请求已经被服务器接收,且仍未被拒绝.客户端应当继续发送请求的剩余部分,或者如果请 ...
- HDU 5025Saving Tang Monk BFS + 二进制枚举状态
3A的题目,第一次TLE,是因为一次BFS起点到终点状态太多爆掉了时间. 第二次WA,是因为没有枚举蛇的状态. 解体思路: 因为蛇的数目是小于5只的,那就首先枚举是否杀死每只蛇即可. 然后多次BFS, ...
随机推荐
- 03----python入门----函数相关
一.前期知识储备 函数定义 你可以定义一个由自己想要功能的函数,以下是简单的规则: 函数代码块以 def 关键词开头,后接函数标识符名称和圆括号 () 任何传入参数和自变量必须放在圆括号中间,圆括号 ...
- swaks制作钓鱼邮件
一.在网站:https://bccto.me/ 申请一个十分钟的邮箱 二.使用命令行,命令行解释如下: --from hacker@qq.com //发件人的邮箱 --ehlo qq.com // ...
- FreeBSD pkg安装软件时出现创建用户失败解决
问题示例:[1/1] Installing package...===> Creating groups.Creating group 'package' with gid '000'.===& ...
- python ORM之sqlalchemy
前沿对象关系映射ORM是在实际应用编程中常用到的技术,它在对象和关系之间建立了一条桥梁,前台的对象型数据和数据库中的关系型的数据通过这个桥梁来相互转化.简单来说就是开发人员在使用ORM模型编程时,不需 ...
- redis雪崩,穿透,击穿
缓存雪崩:同一时间大量key到过期时间失效,可在设置失效时间时加随机数,如果直接修改数据库,那么一定会有不一致,通过失效时间去反复刷新缩短不一致的时间, 为了避免数据一直存在,一定要设置过期时间如果通 ...
- APIView里如何获取HTTP里的数据
request.data.get() 获取post方法表单里的数据 request.post.get() 获取post方法表单里的数据 request.GET.get() 获取URL里的数据 r ...
- c/s应用程序自动更新组件GeneralUpdate3.2.1发布
一.组件简介 GeneralUpdate是基于.net standard 开发的一款(c/s应用)自动升级程序.该组件将更新的核心部分抽离出来方便应用于多种项目当中目前适用于wpf,控制台应用,win ...
- 附032.Kubernetes实现蓝绿发布
蓝绿发布原理 蓝绿发布本质上是希望能优雅无误的迭代应用,以便于使应用平稳提供服务.通常是不停老版本的同时对新版本进行先发布,然后确认无误后进行流量切换,即并行部署. Kubernetes中可以通过de ...
- 开源一个比雪花算法更好用的ID生成算法(雪花漂移)
比雪花算法更好用的ID生成算法(单机或分布式唯一ID) 转载及版权声明 本人从未在博客园之外的网站,发表过本算法长文,其它网站所现文章,均属他人拷贝之作. 所有拷贝之作,均须保留项目开源链接,否则禁止 ...
- PAT (Basic Level) Practice (中文)1054 求平均值 (20 分) 凌宸1642
PAT (Basic Level) Practice (中文)1054 求平均值 (20 分) 题目描述 本题的基本要求非常简单:给定 N 个实数,计算它们的平均值.但复杂的是有些输入数据可能是非法的 ...