「CF85E」 Guard Towers
「CF85E」 Guard Towers
模拟赛考了这题的加强版
然后我因为初值问题直接炸飞
题目大意:
给你二维平面上的 \(n\) 个整点,你需要将它们平均分成两组,使得每组内任意两点间的曼哈顿距离的最大值最小。
本题数据范围为 $n\le 5\times 10^3 $。
这种极值问题,很容易想到的是二分答案,而本题也确实可行。
二分距离的最大值 \(x\),将两点距离大于 \(x\) 的点对连边,则问题转化为我们构建的新图是否为二分图。
其实我感觉复杂度挺假的
考虑曼哈顿距离在此处处理并不方便,所以我们可以将其转化为切比雪夫距离进行求解。
(定义可以去网上康康)
即令 \((x,y)=(x+y,x-y)\),得到的新的点之间的切比雪夫距离等价于原来的点之间的曼哈顿距离。
曼哈顿距离:\(|x_1-x_2|+|y_1-y_2|\)
切比雪夫距离:\(\max\{|x_1-x_2|,|y_1-y_2|\}\)。
于是现在的问题变为:在平面内用两个相同大小的正方形覆盖所有点的最小正方形大小。
首先,平面上的所有点可以被一个最小的矩形覆盖,那么根据切比雪夫距离的定义,两个正方形的某一个顶点必定与矩形的某个顶点重合,因为这个矩形的每条边上都有点的存在。
也就是说,我们找到的两个正方形一定长这样:

如图所示共有两种情况需要讨论。
那么问题就非常简单了:我们枚举每个点,比较重合端点与该点的距离,以决定该点的归属。
这样我们可以在线性时间内找到两种情况的答案,比较即可。
这样我们解决了第一问,即每个正方形的大小。
如何统计方案数?
首先用两种颜色染色就有两种染色方案。
然后最后我们找到的正方形可能长这样:

红色部分的点可以被任意分配,每个点有两种情况,假设共有 \(x\) 个点,就有 \(2^x\) 种分配方案。
现在仍然有一个棘手的问题,如果刚才的两种情况得到的答案大小相等怎么办?
将最终答案乘二即可。
但是,仍然存在特殊情况。

当得到的正方形是这个样子的时候,我们上面讨论的两种情况是一样的,这个时候答案不需要发生改变。
综上,我们在 \(O(n)\) 的时间复杂度内解决了此问题。
(代码是考场上写的改的,真的很丑)
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+5;
const int p=1e9+7;
int x[maxn],y[maxn];
int X1=36456,X2=-4746,y3=34563,y4=-2345234;//看这个地方就知道我的心情有多复杂...
int dist(int X1,int Y1,int X2,int Y2){
return max(abs(X1-X2),abs(Y1-Y2));
}
int Ans=-1,Cnt,n,mx,cnt;
int ksm(int a,int b,int p){
int ans=1;
while(b){
if(b&1) ans=1ll*ans*a%p;
b>>=1,a=1ll*a*a%p;
}
return ans;
}
void calc(){
mx=0,cnt=0;
for(int i=1;i<=n;++i){
mx=max(mx,min(dist(x[i],y[i],X1,y3),dist(x[i],y[i],X2,y4)));
}
for(int i=1;i<=n;++i){
if(dist(x[i],y[i],X1,y3)<=mx&&dist(x[i],y[i],X2,y4)<=mx) ++cnt;
}
if(Ans==-1) Ans=mx,Cnt=cnt;
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n;
if(n==2) cout<<"0\n2\n",exit(0);
for(int i=1;i<=n;++i){
int a,b;cin>>a>>b;
x[i]=a+b;
y[i]=a-b;
}
for(int i=1;i<=n;++i){
if(x[i]<X1) X1=x[i];
if(x[i]>X2) X2=x[i];
if(y[i]<y3) y3=y[i];
if(y[i]>y4) y4=y[i];
}
calc();
swap(y3,y4);
calc();
swap(y3,y4);
if(mx<Ans){
cout<<mx<<'\n'<<ksm(2,1+cnt,p)<<'\n';
}
else if(mx==Ans){
cnt=0;
for(int i=1;i<=n;++i){
if(dist(x[i],y[i],X1,y3)<=mx&&dist(x[i],y[i],X2,y4)<=mx) ++cnt;
else if(dist(x[i],y[i],X1,y4)<=mx&&dist(x[i],y[i],X2,y3)<=mx) ++cnt;
}
if(X2-X1>mx&&y4-y3>mx) cout<<mx<<'\n'<<ksm(2,2+cnt,p)<<'\n';
else cout<<mx<<'\n'<<ksm(2,1+cnt,p)<<'\n';
}
else cout<<Ans<<'\n'<<ksm(2,1+Cnt,p)<<'\n';
return 0;
}
「CF85E」 Guard Towers的更多相关文章
- [CF85E] Guard Towers - 二分+二分图
题目描述 In a far away kingdom lives a very greedy king. To defend his land, he built n n n guard towers ...
- 「译」JUnit 5 系列:条件测试
原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...
- 「译」JUnit 5 系列:扩展模型(Extension Model)
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...
- JavaScript OOP 之「创建对象」
工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...
- 「C++」理解智能指针
维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...
- 「JavaScript」四种跨域方式详解
超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...
- 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management
写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...
- 「2014-3-18」multi-pattern string match using aho-corasick
我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...
- 「2014-3-17」C pointer again …
记录一个比较基础的东东-- C 语言的指针,一直让人又爱又恨,爱它的人觉得它既灵活又强大,恨它的人觉得它太过于灵活太过于强大以至于容易将人绕晕.最早接触 C 语言,还是在刚进入大学的时候,算起来有好些 ...
随机推荐
- F5 api接口开发实战(一)
本人从18年下旬,开始从事F5负载均衡的自动化开发工作,主要使用python编程语言,开发的F5功能模块为LTM和GTM. F5开发简介 1.F5管理模式 F5的管理模式主要有4种(不包含snmp), ...
- GO学习-(22) Go语言之依赖管理
Go语言之依赖管理 Go语言的依赖管理随着版本的更迭正逐渐完善起来. 依赖管理 为什么需要依赖管理 最早的时候,Go所依赖的所有的第三方库都放在GOPATH这个目录下面.这就导致了同一个库只能保存一个 ...
- Linux的top命令cpu占用少,但是显示很高
最近发现服务器一个奇怪的问题,40核的双路服务器,装的centos7.4系统,开机过几个小时后会图形界面特别卡顿,top里发现CPU使用率50%左右,但是进程里没有大量占用的进程.怎么上传不了图片.. ...
- Python+Selenium学习笔记19 - 自动发送邮件
发送简单的邮件 用一个QQ邮箱发送到另一个QQ邮件. 首先设置QQ邮箱,邮箱设置 -> 账号 开启SMTP服务,点击开启按钮,按提示进行操作,需要1毛钱的短信费.开启后如下所示 1 # codi ...
- ALD技术,相机去噪,图像传感器
ALD技术,相机去噪,图像传感器 1. 作为镜片的防反射涂层技术被关注的ALD(atomic layer deposition)的引入趋势. (a)为什么需要一种新的防止反射的涂层技术? ALD被认为 ...
- springboot注解之@ConditionalOnProperty
最近在研究springboot的源码,看到很多@ConditionalOnXxx的注解,大概明白此注解的意思,就是判断条件,这个条件就是Xxx,例如ConditionalOnProperty就是判断配 ...
- 【渗透实战】记一次艰难的内网漫游第四期_蹭我WIFI?看我如何利用组合拳日进蹭网者内网
/文章作者:Kali_MG1937 CSDN博客ID:ALDYS4 QQ:3496925334/ 内网漫游系列第三期:[渗透实战]记一次艰难的内网漫游第三期_我是如何利用APT攻击拿到内网最高权限的 ...
- 【NX二次开发】获取当前鼠标选择的对象 UF_UI_ask_global_sel_object_list
先选择多个对象object,然后使用此函数获取选择的对象的tag,最后就可以使用object的一些函数了. ufun例子: extern DllExport void ufusr(char *parm ...
- 32.qt quick-模仿QQ登录界面实现3D旋转(Rotation、Flipable)
要想模仿QQ登录界面的3D旋转,我们需要学习Rotation和Flipable.由于没找到QQ的资源图,所以我们以两个图片为例模仿QQ的3D旋转,如下图所示: 最终效果如下所示: 1.Rotation ...
- 【题解】codeforces 8c Looking for Order 状压dp
题目描述 Lena喜欢秩序井然的生活.一天,她要去上大学了.突然,她发现整个房间乱糟糟的--她的手提包里的物品都散落在了地上.她想把所有的物品都放回她的手提包.但是,这里有一点问题:她一次最多只能拿两 ...