\(\mathcal{Description}\)

  link.

  给一个 \(n\) 个点 \(m\) 条边的无向图 \(G\)。设图上有 \(k\) 个连通块,求出添加 \(k-1\) 条边使得这些连通块全部连通的方案数。对给定的 \(p\) 取模。

  \(n,m\le10^5\)。

\(\mathcal{Solution}\)

  \(\text{Prufer}\) 序列,设第 \(i\) 个连通块(可能是单点)的度数为 \(d_i\),大小为 \(s_i\)。考虑连通块都是单点,方案数为:

\[k-2\choose d_1-1,d_2-1,\cdots,d_k-1
\]

  即 \(k-2\) 个可重元素的排列数。接下来考虑连通块的大小,每个连通块都可以选出一个点来连边。所以方案数应乘上 \(s_i^{d_i}\)。那么方案数:

\[{k-2\choose d_1-1,d_2-1,\cdots,d_k-1}\prod_{i=1}^ks_i^{d_i}
\]

  枚举 \(t_i=d_i-1\):

\[\sum_{t_i\ge0\land\sum t_i=k-2}{k-2\choose t_1,t_2,\cdots,t_k}\prod_{i=1}^ks_i^{t_i+1}
\]

  发现有一个 \(k\) 元多项式 \(\sum_{i=1}^ks_i\) 的 \(k-2\) 次方,提出来:

\[\left(\sum_{i=1}^ks_i\right)^{k-2}\prod_{i=1}^ks_i
\]

  显然 \(\sum_{i=1}^ks_i=n\),所以答案:

\[n^{k-2}\prod_{i=1}^ks_i
\]

\(\mathcal{Code}\)

  为什么不直接打并查集啊喂。

#include <cstdio>
#include <vector> const int MAXN = 1e5, MAXM = 1e5;
int n, m, p, ecnt, head[MAXN + 5];
std::vector<int> siz;
bool vis[MAXN + 5]; struct Edge { int to, nxt; } graph[MAXM * 2 + 5]; inline void link ( const int s, const int t ) { graph[++ ecnt] = { t, head[s] }, head[s] = ecnt; } inline int qkpow ( int a, int b ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
} inline int DFS ( const int u ) {
if ( vis[u] ) return 0;
int ret = vis[u] = true;
for ( int i = head[u]; i; i = graph[i].nxt ) ret += DFS ( graph[i].to );
return ret;
} int main () {
scanf ( "%d %d %d", &n, &m, &p );
if ( p == 1 ) return puts ( "0" ), 0;
for ( int i = 1, u, v; i <= m; ++ i ) {
scanf ( "%d %d", &u, &v );
link ( u, v ), link ( v, u );
}
int ans = 1;
for ( int i = 1, t; i <= n; ++ i ) {
if ( ! vis[i] ) {
siz.push_back ( t = DFS ( i ) );
ans = 1ll * ans * t % p;
}
}
if ( siz.size () == 1 ) return puts ( "1" ), 0;
ans = 1ll * ans * qkpow ( n, siz.size () - 2 ) % p;
printf ( "%d\n", ans );
return 0;
}

Solution -「CF 156D」Clues的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. win 10 遇到某文件一直在占用导致无法关闭,或者去任务管理器找不到服务怎么办?具体解决

    1. 打开 cmd 指令框 ,输入 perfmon 回车 就会出来这个 点击  打开资源监视器, 在句柄搜索框搜索 那个占用资源的文件或软件关键词 ,如下 搜索酷狗 将有关的选项,右键选中后 打开菜单 ...

  2. kubernetes 之部署metrics-server

    Kubernetes 版本是 1.14 # kubectl version --short Client Version: v1.14.3 Server Version: v1.14.2 下载文件 f ...

  3. [javaweb]strut2-001漏洞分析

    Strut2-001 漏洞描述 框架解析JSP页面标签时会对用户输入的Value值获取,在获取对应的Value值中递归解析%{.}造成了二次解析,最终触发表达式注入漏洞,执行任意代码 影响版本 2.0 ...

  4. 【记录一个问题】golang中使用sync.Pool反而造成了负优化

    之前有这样的代码:从http收数据后,进行snappy解码: dst := make([]byte, 0, len(httpRequestData)*5) dst, err = snappy.Deco ...

  5. thanos的日志能不能打到文件里面去?

    不行. thanos/pkg/logging/logger.go: logger = log.NewLogfmtLogger(log.NewSyncWriter(os.Stderr)) if logF ...

  6. Cesium中级教程3 - Camera - 相机(摄像机)

    Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ Camera CesiumJS中的Camera控制场景的视图.有 ...

  7. gin中multipart/urlencoded绑定

    package main import ( "fmt" "github.com/gin-gonic/gin" "net/http" ) ty ...

  8. 开发者的瑞士军刀「GitHub 热点速览 v.22.04」

    Swiss Army knife 可以说是本周的关键词了,多个项目采用该词来描述它的特性:像是能全方位解决浏览器"网络"操作的 CyberChef 方便你进行数据加密.解编码,还有 ...

  9. mac 下载MySQL后,需要这样打开

    1.打开mac终端 2.输入 export PATH=${PATH}:/usr/local/mysql/bin 3.输入mysql -u root -p 4输入密码

  10. TCP和UDP的区别以及应用

    TCP定义 传输控制协议 (Transmission Control Protocol).TCP协议是面向连接的通信协议,即传输数据之前,在发送端和接收端建立逻辑连接,然后再传输数据,它提供了两台计算 ...