Solution -「多校联训」签到题
\(\mathcal{Description}\)
Link.
给定二分图 \(G=(X\cup Y,E)\),求对于边的一个染色 \(f:E\rightarrow\{1,2,\dots,c\}\),最小化每个结点所染颜色数量极差之和。输出这一最小值。
\(|X|+|Y|,|E|\le10^6\)。
\(\mathcal{Solution}\)
基于“结论好猜”就能认为这题是签到题吗……
答案显然有下界 \(\sum_{u}\left[c\not\mid \sum_{v}[(u,v)\in E]\right]\)。由于写一发过掉了大样例,我们尝试证明它必然可取到。
证明
**引理(对于二分图的 Vizing 定理):** 对于二分图 $G$,$\chi'(G)=\Delta(G)$,其中 $\chi'(G)$ 为 $G$ 的边染色的色数,$\Delta(G)$ 为 $G$ 中结点的最大度数。
证明: 给出构造。按任意顺序枚举 \((x,y)\in E\),令 \(p\) 为 \(x\) 的邻接边中未染的最小颜色,\(q\) 为 \(y\) 的邻接边中未染的最小颜色。由于 \(\chi'(G)=\Delta(G)\),\(p,q\) 是存在的。
- 若 \(p=q\),令 \(f((x,y))=p\)。
- 若 \(p\not=q\),不妨令 \(p>q\),必然存在增广路 \(P=\lang x_1=x,y_1,x_2,y_2,\cdots,x_k\rang\),满足 \(\forall i\in[1,k),f((x_i,y_i))=p\land f((y_i,x_{i+1}))=q\)。同时,亦有 \(y\not\in P\)。我们翻转这条路径的边染色,即 \(f((x_i,y_i))\leftarrow q,f((y_i,x_{i+1}))\leftarrow p\)。此时可套用讨论 1.。
综上,每条边都能被染色且不出现共色的邻接边。命题得证。 \(\square\)
尝试将原命题向引理靠拢。令新图 \(G'\) 初始为 \(G\)。依次枚举 \(G'\) 中的结点 \(x\),尝试将其拆点。设 \(x\) 的邻接点集为 \(\operatorname{adj}(x)\),任取它的一个划分 \(S=\{S_1,\cdots,S_k\}\),满足 \(|S_1|=\cdots=|S_{k-1}|=c\),若 \(k>1\),则令 \(V_{G'}\leftarrow V_{G'}\cup\{x_1,\cdots,x_k\}\setminus\{x\}\),且 \(\operatorname{adj}(x_i)\leftarrow S_i\)。注意若 \(x\) 已是拆出的点,那么必然不会导致图的变动,拆点是可完成的。
此后,发现 \(\Delta(G')\le c\) 且 \(G'\) 依旧是二分图。由引理,\(\chi'(G)=\Delta(G)\),我们取出这样一个染色 \(f\),将拆点合并回原图 \(G\) 且不改变边染色,显然 \(f\) 取到了答案下界。 \(\square\)
\(\mathcal O(|X|+|Y|+|E|)\) 算一算就好。
\(\mathcal{Code}\)
/*~Rainybunny~*/
#ifndef RYBY
#pragma GCC optimize( "Ofast" )
#endif
#include <bits/stdc++.h>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
inline char fgc() {
static char buf[1 << 17], *p = buf, *q = buf;
return p == q && ( q = buf + fread( p = buf, 1, 1 << 17, stdin ), p == q )
? EOF : *p++;
}
inline int rint() {
int x = 0, s = fgc();
for ( ; s < '0' || '9' < s; s = fgc() );
for ( ; '0' <= s && s <= '9'; s = fgc() ) x = x * 10 + ( s ^ '0' );
return x;
}
const int MAXN = 1e6;
int n, m, k, c, deg[MAXN + 5];
int main() {
freopen( "qiandao.in", "r", stdin );
freopen( "qiandao.out", "w", stdout );
n = rint(), m = rint(), k = rint(), c = rint();
rep ( i, 1, k ) {
int u = rint(), v = rint();
++deg[u], ++deg[v + n];
}
int ans = 0;
rep ( i, 1, n + m ) ans += !!( deg[i] % c );
printf( "%d\n", ans );
return 0;
}
Solution -「多校联训」签到题的更多相关文章
- Solution -「多校联训」Sample
\(\mathcal{Description}\) Link (稍作简化:)对于变量 \(p_{1..n}\),满足 \(p_i\in[0,1],~\sum p_i=1\) 时,求 \(\ma ...
- Solution -「多校联训」排水系统
\(\mathcal{Description}\) Link. 在 NOIP 2020 A 的基础上,每条边赋权值 \(a_i\),随机恰好一条边断掉,第 \(i\) 条段的概率正比于 \(a ...
- Solution -「多校联训」I Love Random
\(\mathcal{Description}\) 给定排列 \(\{p_n\}\),可以在其上进行若干次操作,每次选取 \([l,r]\),把其中所有元素变为原区间最小值,求能够得到的所有不同序 ...
- Solution -「多校联训」朝鲜时蔬
\(\mathcal{Description}\) Link. 破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面. 对于整数集 \(X\),定义其 好子集 为满足 \(Y\sub ...
- Solution -「多校联训」假人
\(\mathcal{Description}\) Link. 一种物品有 长度 和 权值 两种属性,现给定 \(n\) 组物品,第 \(i\) 组有 \(k_i\) 个,分别为 \((1,a ...
- Solution -「多校联训」古老的序列问题
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\),和 \(q\) 次形如 \([L,R]\) 的询问,每次回答 \[\sum_{[l,r]\su ...
- Solution -「多校联训」自动机
\(\mathcal{Description}\) Link. 有一个状态集为 \(V\) 的自动机,状态接收 (, ) 和 _(空格) 三种字符,分别编号为 \(0,1,2\),状态 \(u ...
- Solution -「多校联训」战神归来
\(\mathcal{Description}\) Link. 一条地铁线路上共 \(m\) 个站点,\(n\) 个人乘坐地铁,第 \(i\) 个人需要从 \(s_i\) 站坐到 \(e_i\ ...
- Solution -「多校联训」消失的运算符
\(\mathcal{Description}\) Link. 给定长度为 \(n\) 的合法表达式序列 \(s\),其中数字仅有一位正数,运算符仅有 - 作为占位.求将其中恰好 \(k\) ...
随机推荐
- 禁止yum update 自动更新系统内核
使用yum update更新系统软件时,禁止升级内核,可以防止产生因不兼容导致的未知错误. 设置前请先备份原设置文件yum.conf cp /etc/yum.conf /etc/yum.conf ...
- [ css ] 实现漂亮的输入框动画(借鉴自panjiachen的后台管理项目)
效果预览 HTML <div class="l-custom-input"> <input size="large" id="l-i ...
- Centos 7.6关闭selinux
查看selinux状态 [root@localhost ~]# sestatus SELinux status: enabled SELinuxfs mount: /sys/fs/selinux SE ...
- Linux下配置GitHub
一.注册GitHub账号 二.在linux命令行输入 git config --global user.name "YOUR NAME" #配置github账号 git confi ...
- Cookie.Session到Token和JWT
一.session和cookie: 现在一般都是session和cookie一起用,一起提.但是他们俩其实不是一定要在一起. session的产生原因是,http协议是无状态的 这就导致了,不同的用户 ...
- 彻底剖析JVM类加载机制
本文仍然基于JDK8版本,从JDK9模块化器,类加载器有一些变动. 0 javac编译 java代码 public class Math { public static final int initD ...
- docker 环境安装 jenkins
下载镜像运行 jenkins 默认服务器已经安装好了 docker 环境: 拉取 jenkins 镜像 docker pull jenkins/jenkins:lts 镜像的详细信息可以查看:http ...
- Zabbix漏洞利用 CVE-2016-10134
最近也是遇见了Zabbix,所以这里以CVE-2016-10134为例复现一下该漏洞 什么是Zabbix? zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案. ...
- Linux环境下的Docker的安装和部署、学习二
DockerFile体系结构(保留字指令) FROM:基础镜像,当前新镜像是基于哪个镜像的 MAINTAINER:镜像维护者的姓名和邮箱地址 RUN:容器构建时需要运行的命令 EXPOSE:当前容器对 ...
- JavaScript获取URL参数方法总汇
现在做页面基本都用AJAX,因此导致操作很麻烦,每次都需要通过JS获取url中的参数值,网上所搜到很多资料,没一次能记住的,也不知道在哪个项目中使用过,现在又需要通过JS获取url参数,因此不能在偷懒 ...