Solution -「CF 1372E」Omkar and Last Floor
\(\mathcal{Description}\)
Link.
给定一个 \(n \times m\) 的矩阵,每行被划分为若干段,你可以钦定每段中恰好一个位置为 \(1\),其余位置为 \(0\)。设 \(c_i\) 为第 \(i\) 列 \(1\) 的个数,最大化 \(\sum_{i=1}^{m} c_i^2\)。
\(n,m\le100\)。
\(\mathcal{Solution}\)
区间 DP,不过状态设计比较巧妙:令 \(f(l,r)\) 表示确定在 \([l,r]\) 区间内的所有段的最大和。记 \(c_{l,r,k}\) 表示在区间 \([l,r]\) 内,包含了第 \(k\) 列的段的个数,转移:
\]
复杂度 \(\mathcal O(n^4)\)(求转移时在线求 \(c_{l,r,k}\))。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
const int MAXN = 100;
int n, m, f[MAXN + 5][MAXN + 5], L[MAXN + 5][MAXN + 5], R[MAXN + 5][MAXN + 5];
inline void chkmax ( int& a, const int b ) { a < b ? a = b : 0; }
int main () {
scanf ( "%d %d", &n, &m );
for ( int i = 1, k; i <= n; ++ i ) {
scanf ( "%d", &k );
for ( int j = 1, l = 1, r; j <= k; ++ j, l = r + 1 ) {
scanf ( "%*d %d", &r );
for ( int h = l; h <= r; ++ h ) L[h][i] = l, R[h][i] = r;
}
}
for ( int len = 1; len <= m; ++ len ) {
for ( int l = 1, r; ( r = l + len - 1 ) <= m; ++ l ) {
int& cur = f[l][r] = -1;
for ( int k = l; k <= r; ++ k ) {
int c = 0;
for ( int h = 1; h <= n; ++ h ) c += l <= L[k][h] && R[k][h] <= r;
chkmax ( cur, f[l][k - 1] + f[k + 1][r] + c * c );
}
}
}
printf ( "%d\n", f[1][m] );
return 0;
}
Solution -「CF 1372E」Omkar and Last Floor的更多相关文章
- Solution -「CF 1392G」Omkar and Pies
\(\mathcal{Description}\) Link. 给定两个长度为 \(K\) 的 \(01\) 串 \(S,T\) 和 \(n\) 组操作 \((a_i,b_i)\),意义为交换 ...
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
随机推荐
- NIO【同步非阻塞io模型】关于 文件io 的总结
1.前言 这一篇随笔是写 NIO 关于文件输入输出的总结 /* 总结: 1.io操作包括 socket io ,file io ; 2.在nio模型,file io使用fileChannel 管道 , ...
- 利用Word2010制作流程图
利用Word2010制作流程图 原文链接:https://www.toutiao.com/i6483034968225235469/ 一.页面和段落的设置 启动Word2010,打开一个空白文档,并切 ...
- 使用.NET 6开发TodoList应用(23)——实现请求限流
系列导航及源代码 使用.NET 6开发TodoList应用文章索引 需求 Rate Limiting允许保护我们的API服务免受过多请求的连接导致的性能下降,如果请求次数超过了限制,API服务端将会拒 ...
- IE播放音频踩坑之路---待修改
在其他浏览器都是兼容的!在IE9就是显示一个黑色的框上面有个X 音乐无法播放 要显示播放界面的话,要添加 controls 属性(控件属性)例子:<audio src="xxx.m ...
- 小程序canvas绘制纯色圆角区域 setdata数组某一项
小程序canvas绘制纯色圆角区域: //方法: roundRectPath:function(ctx, x, y, w, h, r) { ctx.beginPath(); ctx.moveTo(x ...
- git 那些事儿 —— 基于 Learn Git Branching
前言 推荐一个 git 图形化教学网站:Learn Git Branching,这个网站有一个沙盒可以直接在上面模拟 git 的各种操作,操作效果使用图形的方式展示,非常直观.本文可以看作是它的文字版 ...
- 如何将Excl内数据导入数据库?
最近有个Excl表格内的数据需要导入SQL Server数据库内,使用SQL Server Management Studio客户端图形界面操作了一番,步骤还挺多,感觉有必要分享给大家一下,顺便自己也 ...
- 服务器表单字符串转化Vue表单挂在到对应DOM节点
今天在项目开发中,遇到从后端返回的vue文件(包含template,js,css)的文件,试过用v-html解析文件,渲染到页面,但是无法渲染,后来去查了一堆资料,自己写了一个全局方法来解析这类文件 ...
- day 17 i++优先级大于 *i
(1).有下列定义语句,int *p[4];以下选项中与此语句等价的是[C] (A).int p[4]; (B).int **P; (C).int *(p[4]); (D).int (*p)[4]; ...
- linux目录作用
/ 根目录 /bin 命令保存目录(普通用户就可以使用的命令) /sbin 命令保存目录(超级用户才能使用的命令) /boot 启动目录,启动相关文件 /dev 设备文件保存目录 /etc 配置文件保 ...