Indeed there are many different tourist routes from our city to Rome. You are supposed to find your clients the route with the least cost while gaining the most happiness.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of cities, and K, the total number of routes between pairs of cities; followed by the name of the starting city. The next N−1 lines each gives the name of a city and an integer that represents the happiness one can gain from that city, except the starting city. Then K lines follow, each describes a route between two cities in the format City1 City2 Cost. Here the name of a city is a string of 3 capital English letters, and the destination is always ROM which represents Rome.

Output Specification:

For each test case, we are supposed to find the route with the least cost. If such a route is not unique, the one with the maximum happiness will be recommanded. If such a route is still not unique, then we output the one with the maximum average happiness -- it is guaranteed by the judge that such a solution exists and is unique.

Hence in the first line of output, you must print 4 numbers: the number of different routes with the least cost, the cost, the happiness, and the average happiness (take the integer part only) of the recommanded route. Then in the next line, you are supposed to print the route in the format City1->City2->...->ROM.

Sample Input:

6 7 HZH
ROM 100
PKN 40
GDN 55
PRS 95
BLN 80
ROM GDN 1
BLN ROM 1
HZH PKN 1
PRS ROM 2
BLN HZH 2
PKN GDN 1
HZH PRS 1
 

Sample Output:

3 3 195 97
HZH->PRS->ROM

题意:

题目大体上是一个求最短路的问题,只不过又在此基础上增加了一些其他的内容,比如说:找出最短路的条数,以及路途过程中happinese的最大值和average happinese的最大值问题。

思路:

最短路径涉及到图论,所以就要表示出图,这里我用的是连接矩阵来表示图,所以先用map将城市的名字改成数字,最后输出的时候再改回来。然后就是用Dijkstra来求最短路了。

Code:

#include<iostream>
#include<map>
#include<string>
#include<vector>
#include<stack> using namespace std;
const int Inf = 0x7fffffff; int findMinDist(vector<int> &dist, vector<bool> &collected) {
int ret = Inf, j = -1;
int len = dist.size();
for (int i = 1; i < len; ++i) {
if (!collected[i] && ret > dist[i]) {
ret = dist[i];
j = i;
}
}
return j;
} int main() {
int n, k;
string start; cin >> n >> k >> start; map<string, int> EnToNum;
map<int, string> NumToEn;
EnToNum[start] = 0;
NumToEn[0] = start;
vector<int> happiness(n);
string name;
int value;
for (int i = 1; i < n; ++i) {
cin >> name >> value;
EnToNum[name] = i;
NumToEn[i] = name;
happiness[i] = value;
} vector<vector<int> > martix(n, vector<int>(n, -1));
vector<bool> collected(n, false);
vector<int> path(n, -1);
string name1, name2;
int num1, num2, cost;
for (int i = 0; i < k; ++i) {
cin >> name1 >> name2 >> cost;
num1 = EnToNum[name1];
num2 = EnToNum[name2];
martix[num1][num2] = cost;
martix[num2][num1] = cost;
} vector<int> dist(n, Inf);
dist[0] = 0;
collected[0] = true;
for (int i = 1; i < n; ++i) {
if (martix[0][i] > 0) {
dist[i] = martix[0][i];
path[i] = 0;
}
} int end = EnToNum["ROM"];
vector<pair<int, int> > backtrack;
// Dijkstra算法
while (1) {
int minVertex = findMinDist(dist, collected);
if (minVertex == -1) break;
collected[minVertex] = true;
for (int i = 0; i < n; ++i) {
if (martix[minVertex][i] > 0 && !collected[i]) {
if (dist[minVertex] + martix[minVertex][i] <= dist[i]) {
dist[i] = dist[minVertex] + martix[minVertex][i];
path[i] = minVertex;
if (i == end) {
backtrack.push_back({dist[i], minVertex});
}
}
}
}
} int count = 0;
vector<int> Vbacktrack;
for (int i = 0; i < backtrack.size(); ++i) {
if (backtrack[i].first == dist[end]) {
count++;
Vbacktrack.push_back(backtrack[i].second);
}
} int maxHappinese = -1, aveHappinese = -1;
int maxHappVertex;
for (int i = 0; i < Vbacktrack.size(); ++i) {
int begin = Vbacktrack[i], temp = happiness[end], numOfVertex = 1;
while (path[begin] != -1) {
temp += happiness[begin];
numOfVertex++;
begin = path[begin];
}
if (temp > maxHappinese) {
maxHappinese = temp;
aveHappinese = temp / numOfVertex;
maxHappVertex = Vbacktrack[i];
} else if (temp == maxHappinese && aveHappinese < temp/numOfVertex) {
aveHappinese = temp / numOfVertex;
maxHappVertex = Vbacktrack[i];
}
} cout << dist[end] << " " << count << " " << maxHappinese << " " << aveHappinese << endl; stack<int> pathToRom;
pathToRom.push(end);
while (path[maxHappVertex] != -1) {
pathToRom.push(maxHappVertex);
maxHappVertex = path[maxHappVertex];
}
cout << start;
while (!pathToRom.empty()) {
cout << "->" << NumToEn[pathToRom.top()];
pathToRom.pop();
}
cout << endl; return 0;
}

  

搞了半天就通过了一组数据。

1087 All Roads Lead to Rome的更多相关文章

  1. PAT 1087 All Roads Lead to Rome[图论][迪杰斯特拉+dfs]

    1087 All Roads Lead to Rome (30)(30 分) Indeed there are many different tourist routes from our city ...

  2. [图的遍历&多标准] 1087. All Roads Lead to Rome (30)

    1087. All Roads Lead to Rome (30) Indeed there are many different tourist routes from our city to Ro ...

  3. PAT 1087 All Roads Lead to Rome

    PAT 1087 All Roads Lead to Rome 题目: Indeed there are many different tourist routes from our city to ...

  4. PAT甲级1087. All Roads Lead to Rome

    PAT甲级1087. All Roads Lead to Rome 题意: 确实有从我们这个城市到罗马的不同的旅游线路.您应该以最低的成本找到您的客户的路线,同时获得最大的幸福. 输入规格: 每个输入 ...

  5. PAT 甲级 1087 All Roads Lead to Rome(SPFA+DP)

    题目链接 All Roads Lead to Rome 题目大意:求符合题意(三关键字)的最短路.并且算出路程最短的路径有几条. 思路:求最短路并不难,SPFA即可,关键是求总路程最短的路径条数. 我 ...

  6. 1087. All Roads Lead to Rome (30)

    时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Indeed there are many different ...

  7. PAT 甲级 1087 All Roads Lead to Rome

    https://pintia.cn/problem-sets/994805342720868352/problems/994805379664297984 Indeed there are many ...

  8. 1087 All Roads Lead to Rome (30)(30 分)

    Indeed there are many different tourist routes from our city to Rome. You are supposed to find your ...

  9. 1087 All Roads Lead to Rome (30 分)(最短路径)

    直接用Dijkstra做 #include<bits/stdc++.h> using namespace std; int n,m; map<string,int>si; ma ...

随机推荐

  1. WPF -- 一种实现本地化的方法

    本文介绍一种WPF程序实现本地化的方法. 步骤 首先,假设xaml文件中存在一个Button按钮,内容为"按钮",实现本地化的步骤如下: 展开程序的Properties,双击Res ...

  2. CSS相关知识(持续更新中)

    1. 弹性布局 一种当页面需要适应不同的屏幕大小以及设备类型时确保元素拥有恰当的行为的布局方式.引入弹性布局模型的目的是提供一种更加有效的方式来对一个容器中的子元素进行排列.对齐和分配空白空间. 2. ...

  3. 653. 两数之和 IV - 输入 BST + HashSet

    653. 两数之和 IV - 输入 BST 题目描述 题解分析 最简单的方法就是遍历整棵树,找出所有可能的组合,判断是否存在和为 kk 的一对节点.现在在此基础上做一些改进. 如果存在两个元素之和为 ...

  4. HDOJ-6665(离散化+DFS求连通分量)

    Calabash and Landlord HDOJ-6665 这里考察的是离散化的知识. 首先将所有的x坐标和y坐标放入两个数组中,然后对这两个数组进行排序.因为总共的坐标数就5个所以这两个数组的大 ...

  5. 记客户端WebBrowser控件修改版本的问题

    保留在本地电脑的一篇记录,第二条描述是在网上看来的,忘记在哪看的了,也就没注明出处,望见谅. 1.Winform内置浏览器控件的底层调用与系统IE浏览器的底层调用相同. 2.IE8 对渲染引擎做了很大 ...

  6. C# 基础 - 堆栈跟踪使用

    使用一:可用于捕获报错时. using System.Diagnostics; ... StackTrace st = new StackTrace(true); string stackIndent ...

  7. Java 树结构实际应用 三(二叉排序树)

    二叉排序树 1 先看一个需求 给你一个数列 (7, 3, 10, 12, 5, 1, 9),要求能够高效的完成对数据的查询和添加   2 解决方案分析  使用数组 数组未排序, 优点:直接在数组尾添 ...

  8. linuxc语言图形化编程包含gtk/gtk.h编译总是报错找不到该文件的解决方法

    在编译时输入gcc file.c `pkg-config --libs --cflags gtk+-2.0` 注意`不是单引号,和--前均有一个字符 这样问题就结局啦

  9. 计算机图形学中使用Turbo C++画图步骤

    一.下载安装Turbo C++ 我安装的是Turbo C++ 3.2.2.0下载链接 二.画图 1.打开Turbo C++,点击右下角start turbo C++ 2.点击file ->new ...

  10. Jaeger Client Go 链路追踪|入门详解

    目录 从何说起 Jaeger 部署 Jaeger 从示例了解 Jaeger Client Go 了解 trace.span tracer 配置 Sampler 配置 Reporter 配置 分布式系统 ...