1 绘制直方图:

import matplotlib.pyplot as plt
import numpy as np
import matplotlib def hist1():
# 设置matplotlib正常显示中文和负号
matplotlib.rcParams['font.sans-serif'] = ['SimHei'] # 用黑体显示中文
matplotlib.rcParams['axes.unicode_minus'] = False # 正常显示负号
data = np.random.randn(10000)
'''
data: 绘图数据
bins:直方图的长方形数目, 可选项, 默认为10
normed:是否将得到的直方图向量归一化, 可选项, 默认为0, 代表不归一化, 显示频数。 normed=1,表示归一化,显示频率
facecolor: 长方形的颜色
edgecolor: 长方形边框的颜色
alpha: 透明度
'''
plt.hist(data, bins=40, density=1, facecolor='blue', edgecolor='black', alpha=0.7)
# 显示横轴标签
plt.xlabel("区间")
# 显示纵轴标签
plt.ylabel("频数/频率")
# 显示图标数
plt.title("频数/频率分布直方图")
plt.show() if __name__ == '__main__':
hist1()

绘制的直方图效果如下:

1.2条形图

import matplotlib.pyplot as plt
import matplotlib
# 设置中文字体和负号正常显示
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False label_list = ['2014', '2015', '2016', '2017'] # 横坐标刻度显示值
num_list1 = [20, 30, 15, 35] # 纵坐标值1
num_list2 = [15, 30, 40, 20] # 纵坐标值2
x = range(len(num_list1))
"""
绘制条形图
left:长条形中点横坐标
height:长条形高度
width:长条形宽度,默认值0.8
label:为后面设置legend准备
"""
rects1 = plt.bar(left=x, height=num_list1, width=0.4, alpha=0.8, color='red', label="一部门")
rects2 = plt.bar(left=[i + 0.4 for i in x], height=num_list2, width=0.4, color='green', label="二部门")
plt.ylim(0, 50) # y轴取值范围
plt.ylabel("数量")
"""
设置x轴刻度显示值
参数一:中点坐标
参数二:显示值
"""
plt.xticks([index + 0.2 for index in x], label_list)
plt.xlabel("年份")
plt.title("某某公司")
plt.legend() # 设置题注
# 编辑文本
for rect in rects1:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height+1, str(height), ha="center", va="bottom")
for rect in rects2:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height+1, str(height), ha="center", va="bottom")
plt.show()

1.3 水平条形图:

import matplotlib.pyplot as plt
import matplotlib matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False price = [39.5, 39.9, 45.4, 38.9, 33.34]
"""
绘制水平条形图方法barh
参数一:y轴
参数二:x轴
"""
plt.barh(range(5), price, height=0.7, color='steelblue', alpha=0.8) # 从下往上画
plt.yticks(range(5), ['亚马逊', '当当网', '中国图书网', '京东', '天猫'])
plt.xlim(30,47)
plt.xlabel("价格")
plt.title("不同平台图书价格")
for x, y in enumerate(price):
plt.text(y + 0.2, x - 0.1, '%s' % y)
plt.show()

1.4 堆叠条形图

import matplotlib.pyplot as plt
import matplotlib matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False label_list = ['2014', '2015', '2016', '2017']
num_list1 = [20, 30, 15, 35]
num_list2 = [15, 30, 40, 20]
x = range(len(num_list1))
rects1 = plt.bar(left=x, height=num_list1, width=0.45, alpha=0.8, color='red', label="一部门")
rects2 = plt.bar(left=x, height=num_list2, width=0.45, color='green', label="二部门", bottom=num_list1)
plt.ylim(0, 80)
plt.ylabel("数量")
plt.xticks(x, label_list)
plt.xlabel("年份")
plt.title("某某公司")
plt.legend()
plt.show()

饼图

import matplotlib.pyplot as plt
import matplotlib matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False label_list = ["第一部分", "第二部分", "第三部分"] # 各部分标签
size = [55, 35, 10] # 各部分大小
color = ["red", "green", "blue"] # 各部分颜色
explode = [0.05, 0, 0] # 各部分突出值
"""
绘制饼图
explode:设置各部分突出
label:设置各部分标签
labeldistance:设置标签文本距圆心位置,1.1表示1.1倍半径
autopct:设置圆里面文本
shadow:设置是否有阴影
startangle:起始角度,默认从0开始逆时针转
pctdistance:设置圆内文本距圆心距离
返回值
l_text:圆内部文本,matplotlib.text.Text object
p_text:圆外部文本
"""
patches, l_text, p_text = plt.pie(size, explode=explode, colors=color, labels=label_list, labeldistance=1.1, autopct="%1.1f%%", shadow=False, startangle=90, pctdistance=0.6)
plt.axis("equal") # 设置横轴和纵轴大小相等,这样饼才是圆的
plt.legend()
plt.show()

matplotlib如何绘制直方图、条形图和饼图的更多相关文章

  1. 利用pandas读取Excel表格,用matplotlib.pyplot绘制直方图、折线图、饼图

    利用pandas读取Excel表格,用matplotlib.pyplot绘制直方图.折线图.饼图 数据: 折线图代码: import  pandas  as pdimport  matplotlib. ...

  2. python Matplotlib 系列教程(三)——绘制直方图和条形图

    在本章节我们将学习如何绘制条形图和直方图 条形图与直方图的区别:首先,条形图是用条形的长度表示各类别频数的多少,其宽度(表示类别)则是固定的: 直方图是用面积表示各组频数的多少,矩形的高度表示每一组的 ...

  3. matplotlib绘制直方图【柱状图】

    代码: def drawBar(): xticks = ['A', 'B', 'C', 'D', 'E']#每个柱的下标说明 gradeGroup = {'A':200,'B':250,'C':330 ...

  4. 关于matplotlib绘制直方图偏移的问题

    在使用pyplot绘制直方图的时候我发现了一个问题,在给函数.hist()传参的时候,如果传入的组数不是刚刚好(就是说这个组数如果是使用(最大值-最小值)/组距计算出来,而这个数字不是整除得来而是取整 ...

  5. Python:matplotlib绘制直方图

    使用hist方法来绘制直方图:     绘制直方图,最主要的是一个数据集data和需要划分的区间数量bins,另外你也可以设置一些颜色.类型参数: plt.hist(np.random.randn(1 ...

  6. MFC绘制直方图和饼图

    转载原文: Normal 0 7.8 磅 0 2 false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNorma ...

  7. numpy和matplotlib绘制直方图

    使用 Matplotlib Matplotlib 中有直方图绘制函数:matplotlib.pyplot.hist()它可以直接统计并绘制直方图.你应该使用函数 calcHist() 或 np.his ...

  8. NumPy使用 Matplotlib 绘制直方图

    NumPy - 使用 Matplotlib 绘制直方图 NumPy 有一个numpy.histogram()函数,它是数据的频率分布的图形表示. 水平尺寸相等的矩形对应于类间隔,称为bin,变量hei ...

  9. Matplotlib 图形绘制

    章节 Matplotlib 安装 Matplotlib 入门 Matplotlib 基本概念 Matplotlib 图形绘制 Matplotlib 多个图形 Matplotlib 其他类型图形 Mat ...

随机推荐

  1. elasticsearch中query_string的隐藏坑

    elasticsearch查询中使用filter查询添加query_string格式为: {                    "query_string": {       ...

  2. scrapy获取汽车之家数据

    1.创建scrapy项目 >scrapy startproject scrapy_carhome 2.找到对应接口 3.创建爬虫文件 > cd scrapy_carhome\scrapy_ ...

  3. java meil

    import java.util.Date; import java.util.List; import java.util.Properties; import javax.activation.D ...

  4. 菜鸡的Java笔记第三 - java 自动转换原则

    自动转换原则 数据范围保存大的数据类型要转换为数据范围保存小的数据类型,使用强制转换(强制转型就是在变量的前面加括号,在括号里写上需要强制要转的类型.) 数据范围保存小的数据类型可以自动转换为数据范围 ...

  5. [noi712]练级

    先考虑一个联通块,可以发现这个联通快内不会存在两个偶数的点证明:如果存在,那么这两个点的某一条路径上的边全部反过来,可以使答案+2,即答案为点数或点数-1同时,发现答案的奇数点数一定与边数同奇偶,那么 ...

  6. [luogu6838]网络站点

    先分析答案,即$x$和$y$的关系有以下两种: 1.$y$在$x$子树中,那么答案即为包含$y$的$x$的儿子 2.$y$不在$x$子树中,那么答案即为$x$的父亲 那么第一个问题就是判断$y$是否在 ...

  7. idea 的git代码回退回某个版本

    intellij idea 的git代码回退回滚 找到Reset HEAD 填写提交码,注意这里要选择"hard" 使用命令行强制提交代码 git push -f

  8. .Net Core中使用ElasticSearch(二)

    .Net的ElasticSearch 有两个版本,Elasticsearch.Net(低级) 和 NEST(高级),推荐使用 NEST,低级版本的更灵活,水太深 把握不住.有个需要注意,使用的版本号必 ...

  9. Java设计模式之(十一)——享元模式

    1.什么是享元模式? Use sharing to support large numbers of fine-grained objects efficiently. 享元模式(Flyweight ...

  10. Peaks Gym 100365H

    Peaks ( Gym 100365H ) 这题nk做法还挺正常的..后面那个循环就很恶心了 考虑 dp[i][j] 表示长度为i的排列,恰好有k个峰的方案数量. 然后转移就是把 i 插入 i-1 的 ...