18 | if语句、for语句和switch语句

现在,让我们暂时走下神坛,回归民间。我今天要讲的if语句、for语句和switch语句都属于 Go 语言的基本流程控制语句。它们的语法看起来很朴素,但实际上也会有一些使用技巧和注意事项。我在本篇文章中会以一系列面试题为线索,为你讲述它们的用法。

那么,今天的问题是:使用携带range子句的for语句时需要注意哪些细节? 这是一个比较笼统的问题。我还是通过编程题来讲解吧。

本问题中的代码都被放在了命令源码文件 demo41.go 的main函数中的。为了专注问题本身,本篇文章中展示的编程题会省略掉一部分代码包声明语句、代码包导入语句和main函数本身的声明部分。

numbers1 := []int{1, 2, 3, 4, 5, 6}
for i := range numbers1 {
if i == 3 {
numbers1[i] |= i
}
}
fmt.Println(numbers1)

我先声明了一个元素类型为int的切片类型的变量numbers1,在该切片中有 6 个元素值,分别是从1到6的整数。我用一条携带range子句的for语句去迭代numbers1变量中的所有元素值。

在这条for语句中,只有一个迭代变量i。我在每次迭代时,都会先去判断i的值是否等于3,如果结果为true,那么就让numbers1的第i个元素值与i本身做按位或的操作,再把操作结果作为numbers1的新的第i个元素值。最后我会打印出numbers1的值。

所以具体的问题就是,这段代码执行后会打印出什么内容?

这里的典型回答是:打印的内容会是[1 2 3 7 5 6]。

问题解析

你心算得到的答案是这样吗?让我们一起来复现一下这个计算过程。

当for语句被执行的时候,在range关键字右边的numbers1会先被求值。

这个位置上的代码被称为range表达式。range表达式的结果值可以是数组、数组的指针、切片、字符串、字典或者允许接收操作的通道中的某一个,并且结果值只能有一个。

对于不同种类的range表达式结果值,for语句的迭代变量的数量可以有所不同。

就拿我们这里的numbers1来说,它是一个切片,那么迭代变量就可以有两个,右边的迭代变量代表当次迭代对应的某一个元素值,而左边的迭代变量则代表该元素值在切片中的索引值。

那么,如果像本题代码中的for语句那样,只有一个迭代变量的情况意味着什么呢?这意味着,该迭代变量只会代表当次迭代对应的元素值的索引值。

更宽泛地讲,当只有一个迭代变量的时候,数组、数组的指针、切片和字符串的元素值都是无处安放的,我们只能拿到按照从小到大顺序给出的一个个索引值。

因此,这里的迭代变量i的值会依次是从0到5的整数。当i的值等于3的时候,与之对应的是切片中的第 4 个元素值4。对4和3进行按位或操作得到的结果是7。这就是答案中的第 4 个整数是7的原因了。

现在,我稍稍修改一下上面的代码。我们再来估算一下打印内容。

numbers2 := [...]int{1, 2, 3, 4, 5, 6}
maxIndex2 := len(numbers2) - 1
for i, e := range numbers2 {
if i == maxIndex2 {
numbers2[0] += e
} else {
numbers2[i+1] += e
}
}
fmt.Println(numbers2)

注意,我把迭代的对象换成了numbers2。numbers2中的元素值同样是从1到6的 6 个整数,并且元素类型同样是int,但它是一个数组而不是一个切片。

在for语句中,我总是会对紧挨在当次迭代对应的元素后边的那个元素,进行重新赋值,新的值会是这两个元素的值之和。当迭代到最后一个元素时,我会把此range表达式结果值中的第一个元素值,替换为它的原值与最后一个元素值的和,最后,我会打印出numbers2的值。

对于这段代码,我的问题依旧是:打印的内容会是什么?你可以先思考一下。

好了,我要公布答案了。打印的内容会是[7 3 5 7 9 11]。我先来重现一下计算过程。当for语句被执行的时候,在range关键字右边的numbers2会先被求值。

这里需要注意两点:

1、range表达式只会在for语句开始执行时被求值一次,无论后边会有多少次迭代;

2、range表达式的求值结果会被复制,也就是说,被迭代的对象是range表达式结果值的副本而不是原值。

基于这两个规则,我们接着往下看。在第一次迭代时,我改变的是numbers2的第二个元素的值,新值为3,也就是1和2之和。

但是,被迭代的对象的第二个元素却没有任何改变,毕竟它与numbers2已经是毫不相关的两个数组了。因此,在第二次迭代时,我会把numbers2的第三个元素的值修改为5,即被迭代对象的第二个元素值2和第三个元素值3的和。

以此类推,之后的numbers2的元素值依次会是7、9和11。当迭代到最后一个元素时,我会把numbers2的第一个元素的值修改为1和6之和。

好了,现在该你操刀了。你需要把numbers2的值由一个数组改成一个切片,其中的元素值都不要变。为了避免混淆,你还要把这个切片值赋给变量numbers3,并且把后边代码中所有的numbers2都改为numbers3。

问题是不变的,执行这段修改版的代码后打印的内容会是什么呢?如果你实在估算不出来,可以先实际执行一下,然后再尝试解释看到的答案。提示一下,切片与数组是不同的,前者是引用类型的,而后者是值类型的。

我们可以先接着讨论后边的内容,但是我强烈建议你一定要回来,再看看我留给你的这个问题,认真地思考和计算一下。

知识扩展

问题 1:switch语句中的switch表达式和case表达式之间有着怎样的联系?

先来看一段代码。

value1 := [...]int8{0, 1, 2, 3, 4, 5, 6}
switch 1 + 3 {
case value1[0], value1[1]:
fmt.Println("0 or 1")
case value1[2], value1[3]:
fmt.Println("2 or 3")
case value1[4], value1[5], value1[6]:
fmt.Println("4 or 5 or 6")
}

我先声明了一个数组类型的变量value1,该变量的元素类型是int8。在后边的switch语句中,被夹在switch关键字和左花括号{之间的是1 + 3,这个位置上的代码被称为switch表达式。这个switch语句还包含了三个case子句,而每个case子句又各包含了一个case表达式和一条打印语句。

所谓的case表达式一般由case关键字和一个表达式列表组成,表达式列表中的多个表达式之间需要有英文逗号,分割,比如,上面代码中的case value1[0], value1[1]就是一个case表达式,其中的两个子表达式都是由索引表达式表示的。

另外的两个case表达式分别是case value1[2], value1[3]和case value1[4], value1[5], value1[6]。

此外,在这里的每个case子句中的那些打印语句,会分别打印出不同的内容,这些内容用于表示case子句被选中的原因,比如,打印内容0 or 1表示当前case子句被选中是因为switch表达式的结果值等于0或1中的某一个。另外两条打印语句会分别打印出2 or 3和4 or 5 or 6。

现在问题来了,拥有这样三个case表达式的switch语句可以成功通过编译吗?如果不可以,原因是什么?如果可以,那么该switch语句被执行后会打印出什么内容。

我刚才说过,只要switch表达式的结果值与某个case表达式中的任意一个子表达式的结果值相等,该case表达式所属的case子句就会被选中。

并且,一旦某个case子句被选中,其中的附带在case表达式后边的那些语句就会被执行。与此同时,其他的所有case子句都会被忽略。

当然了,如果被选中的case子句附带的语句列表中包含了fallthrough语句,那么紧挨在它下边的那个case子句附带的语句也会被执行。

正因为存在上述判断相等的操作(以下简称判等操作),switch语句对switch表达式的结果类型,以及各个case表达式中子表达式的结果类型都是有要求的。毕竟,在 Go 语言中,只有类型相同的值之间才有可能被允许进行判等操作。

如果switch表达式的结果值是无类型的常量,比如1 + 3的求值结果就是无类型的常量4,那么这个常量会被自动地转换为此种常量的默认类型的值,比如整数4的默认类型是int,又比如浮点数3.14的默认类型是float64。

因此,由于上述代码中的switch表达式的结果类型是int,而那些case表达式中子表达式的结果类型却是int8,它们的类型并不相同,所以这条switch语句是无法通过编译的。

再来看一段很类似的代码:

value2 := [...]int8{0, 1, 2, 3, 4, 5, 6}
switch value2[4] {
case 0, 1:
fmt.Println("0 or 1")
case 2, 3:
fmt.Println("2 or 3")
case 4, 5, 6:
fmt.Println("4 or 5 or 6")
}

其中的变量value2与value1的值是完全相同的。但不同的是,我把switch表达式换成了value2[4],并把下边那三个case表达式分别换为了case 0, 1、case 2, 3和case 4, 5, 6。

如此一来,switch表达式的结果值是int8类型的,而那些case表达式中子表达式的结果值却是无类型的常量了。这与之前的情况恰恰相反。那么,这样的switch语句可以通过编译吗?

答案是肯定的。因为,如果case表达式中子表达式的结果值是无类型的常量,那么它的类型会被自动地转换为switch表达式的结果类型,又由于上述那几个整数都可以被转换为int8类型的值,所以对这些表达式的结果值进行判等操作是没有问题的。

当然了,如果这里说的自动转换没能成功,那么switch语句照样通不过编译。

通过上面这两道题,你应该可以搞清楚switch表达式和case表达式之间的联系了。由于需要进行判等操作,所以前者和后者中的子表达式的结果类型需要相同。

switch语句会进行有限的类型转换,但肯定不能保证这种转换可以统一它们的类型。还要注意,如果这些表达式的结果类型有某个接口类型,那么一定要小心检查它们的动态值是否都具有可比性(或者说是否允许判等操作)。

因为,如果答案是否定的,虽然不会造成编译错误,但是后果会更加严重:引发 panic(也就是运行时恐慌)。

问题 2:switch语句对它的case表达式有哪些约束?

我在上一个问题的阐述中还重点表达了一点,不知你注意到了没有,那就是:switch语句在case子句的选择上是具有唯一性的。

正因为如此,switch语句不允许case表达式中的子表达式结果值存在相等的情况,不论这些结果值相等的子表达式,是否存在于不同的case表达式中,都会是这样的结果。具体请看这段代码:

value3 := [...]int8{0, 1, 2, 3, 4, 5, 6}
switch value3[4] {
case 0, 1, 2:
fmt.Println("0 or 1 or 2")
case 2, 3, 4:
fmt.Println("2 or 3 or 4")
case 4, 5, 6:
fmt.Println("4 or 5 or 6")
}

变量value3的值同value1,依然是由从0到6的 7 个整数组成的数组,元素类型是int8。switch表达式是value3[4],三个case表达式分别是case 0, 1, 2、case 2, 3, 4和case 4, 5, 6。

由于在这三个case表达式中存在结果值相等的子表达式,所以这个switch语句无法通过编译。不过,好在这个约束本身还有个约束,那就是只针对结果值为常量的子表达式。

比如,子表达式1+1和2不能同时出现,1+3和4也不能同时出现。有了这个约束的约束,我们就可以想办法绕过这个对子表达式的限制了。再看一段代码:

value5 := [...]int8{0, 1, 2, 3, 4, 5, 6}
switch value5[4] {
case value5[0], value5[1], value5[2]:
fmt.Println("0 or 1 or 2")
case value5[2], value5[3], value5[4]:
fmt.Println("2 or 3 or 4")
case value5[4], value5[5], value5[6]:
fmt.Println("4 or 5 or 6")
}

变量名换成了value5,但这不是重点。重点是,我把case表达式中的常量都换成了诸如value5[0]这样的索引表达式。

虽然第一个case表达式和第二个case表达式都包含了value5[2],并且第二个case表达式和第三个case表达式都包含了value5[4],但这已经不是问题了。这条switch语句可以成功通过编译。

不过,这种绕过方式对用于类型判断的switch语句(以下简称为类型switch语句)就无效了。因为类型switch语句中的case表达式的子表达式,都必须直接由类型字面量表示,而无法通过间接的方式表示。代码如下:

value6 := interface{}(byte(127))
switch t := value6.(type) {
case uint8, uint16:
fmt.Println("uint8 or uint16")
case byte:
fmt.Printf("byte")
default:
fmt.Printf("unsupported type: %T", t)
}

变量value6的值是空接口类型的。该值包装了一个byte类型的值127。我在后面使用类型switch语句来判断value6的实际类型,并打印相应的内容。

这里有两个普通的case子句,还有一个default case子句。前者的case表达式分别是case uint8, uint16和case byte。你还记得吗?byte类型是uint8类型的别名类型。

因此,它们两个本质上是同一个类型,只是类型名称不同罢了。在这种情况下,这个类型switch语句是无法通过编译的,因为子表达式byte和uint8重复了。好了,以上说的就是case表达式的约束以及绕过方式,你学会了吗。

总结

我们今天主要讨论了for语句和switch语句,不过我并没有说明那些语法规则,因为它们太简单了。我们需要多加注意的往往是那些隐藏在 Go 语言规范和最佳实践里的细节。

这些细节其实就是我们很多技术初学者所谓的“坑”。比如,我在讲for语句的时候交代了携带range子句时只有一个迭代变量意味着什么。你必须知道在迭代数组或切片时只有一个迭代变量的话是无法迭代出其中的元素值的,否则你的程序可能就不会像你预期的那样运行了。

笔记源码

https://github.com/MingsonZheng/go-core-demo

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。

欢迎转载、使用、重新发布,但务必保留文章署名 郑子铭 (包含链接: http://www.cnblogs.com/MingsonZheng/ ),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。

Go语言核心36讲(Go语言进阶技术十二)--学习笔记的更多相关文章

  1. Go语言核心36讲(Go语言进阶技术十)--学习笔记

    16 | go语句及其执行规则(上) 我们已经知道,通道(也就是 channel)类型的值,可以被用来以通讯的方式共享数据.更具体地说,它一般被用来在不同的 goroutine 之间传递数据.那么 g ...

  2. Go语言核心36讲(Go语言基础知识三)--学习笔记

    03 | 库源码文件 在我的定义中,库源码文件是不能被直接运行的源码文件,它仅用于存放程序实体,这些程序实体可以被其他代码使用(只要遵从 Go 语言规范的话). 这里的"其他代码" ...

  3. Go语言核心36讲(Go语言实战与应用二)--学习笔记

    24 | 测试的基本规则和流程(下) Go 语言是一门很重视程序测试的编程语言,所以在上一篇中,我与你再三强调了程序测试的重要性,同时,也介绍了关于go test命令的基本规则和主要流程的内容.今天我 ...

  4. Go语言核心36讲(Go语言进阶技术八)--学习笔记

    14 | 接口类型的合理运用 前导内容:正确使用接口的基础知识 在 Go 语言的语境中,当我们在谈论"接口"的时候,一定指的是接口类型.因为接口类型与其他数据类型不同,它是没法被实 ...

  5. Go语言核心36讲(Go语言进阶技术十六)--学习笔记

    22 | panic函数.recover函数以及defer语句(下) 我在前一篇文章提到过这样一个说法,panic 之中可以包含一个值,用于简要解释引发此 panic 的原因. 如果一个 panic ...

  6. Go语言核心36讲(Go语言进阶技术一)--学习笔记

    07 | 数组和切片 我们这次主要讨论 Go 语言的数组(array)类型和切片(slice)类型. 它们的共同点是都属于集合类的类型,并且,它们的值也都可以用来存储某一种类型的值(或者说元素). 不 ...

  7. Go语言核心36讲(Go语言进阶技术三)--学习笔记

    09 | 字典的操作和约束 至今为止,我们讲过的集合类的高级数据类型都属于针对单一元素的容器. 它们或用连续存储,或用互存指针的方式收纳元素,这里的每个元素都代表了一个从属某一类型的独立值. 我们今天 ...

  8. Go语言核心36讲(Go语言进阶技术四)--学习笔记

    10 | 通道的基本操作 作为 Go 语言最有特色的数据类型,通道(channel)完全可以与 goroutine(也可称为 go 程)并驾齐驱,共同代表 Go 语言独有的并发编程模式和编程哲学. D ...

  9. Go语言核心36讲(Go语言进阶技术五)--学习笔记

    11 | 通道的高级玩法 我们已经讨论过了通道的基本操作以及背后的规则.今天,我再来讲讲通道的高级玩法. 首先来说说单向通道.我们在说"通道"的时候指的都是双向通道,即:既可以发也 ...

  10. Go语言核心36讲(Go语言进阶技术六)--学习笔记

    12 | 使用函数的正确姿势 在前几期文章中,我们分了几次,把 Go 语言自身提供的,所有集合类的数据类型都讲了一遍,额外还讲了标准库的container包中的几个类型. 在几乎所有主流的编程语言中, ...

随机推荐

  1. Percolator模型及其在TiKV中的实现

    一.背景 Percolator是Google在2010年发表的论文<Large-scale Incremental Processing Using Distributed Transactio ...

  2. node 在centos 6.5 上 安装过程中出现/usr/lib64/libstdc++.so.6: version 'GLIBCXX_3.4.19' not found问题的解决

    node  在centos 6.5 上 安装过程中出现/usr/lib64/libstdc++.so.6: version 'GLIBCXX_3.4.19' not found问题的解决 在linux ...

  3. P7599-[APIO2021]雨林跳跃【二分,倍增,ST表】

    正题 题目链接:https://www.luogu.com.cn/problem/P7599 题目大意 \(n\)棵树,在某棵树上时可以选择向左右两边第一棵比它高的树跳,现在\(q\)次询问从\([A ...

  4. selenium--常用判断

    获取页面 title 的方法可以直接用 driver.title 获取到,然后也可以把获取到的结果用做断言.1.首先导入 expected_conditions 模块:from selenium.we ...

  5. Jetbrains CLion 安装与激活 详解

    1. 下载与安装 1.1 下载 这里提供了三个操作系统的官网下载地址 Mac Windows Linux 进入页面后向下拉点击蓝色按钮即可下载. 1.2 安装 这里将用 MacOS 来进行示例,Win ...

  6. 【k8s】使用k8s部署一个简单的nginx服务

    名词解释 Namespace 表示命名空间 Deployment 表示pod发布 Service 表示多个pod做为一组的集合对外通过服务的表示 kubectl 是k8s的命令行操作命令,可以创建和更 ...

  7. Java初步学习——2021.10.09每日总结,第五周周六

    (1)今天做了什么: (2)明天准备做什么? (3)遇到的问题,如何解决? 今天学习了菜鸟教程实例部分 一.字符串 1.字符串比较--compareTo方法 public class Main { p ...

  8. FastAPI 学习之路(十五)响应状态码

    系列文章: FastAPI 学习之路(一)fastapi--高性能web开发框架 FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四) FastAPI 学习之 ...

  9. python收集参数与解包

    收集任意数量的实参 def make_pizza(*toppings): """打印顾客点的所有配料""" print(toppings) ...

  10. Java:并发笔记-09

    Java:并发笔记-09 说明:这是看了 bilibili 上 黑马程序员 的课程 java并发编程 后做的笔记 7. 共享模型之工具-2 原理:AQS 原理 对于 AQS 的原理这部分内容,没很好的 ...