*XXXIV. BZOJ3971 [WF2013]Матрёшка

摘自 DP 做题记录 II 例题 XXXIV.

仍然是神仙区间 DP。

直接设状态 \(f_{i,j}\) 表示区间 \([i,j]\) 的答案不太方便,考虑最终答案一定由若干段 \(1\sim m\) 的套娃合并在一起,所以我们设 \(f_{i,j}\) 表示把 \([i,j]\) 合并成一个套娃的最小代价并设 \(g_i\) 表示把长度 \(i\) 的前缀合并成若干个合法套娃的最小代价,则答案为 \(g_n\)。

考虑怎么算 \(f_{l,r}\):首先 \(l,r\) 不能有相同大小的套娃,记为 \(\mathrm{diff}(l,r)\)。然后枚举断点 \(k\),注意到 \([l,k]\) 所有大于 \(\min [k+1,r]\) 的套娃需要被拆开,以及 \([k+1,r]\) 所有大于 \(\min[l,k]\) 的套娃需要被拆开,这个可以二维前缀和预处理 \(s_{l,V}\) 表示 \(1\sim l\) 有多少个大小在 \(1\sim V\) 的套娃并 \(\mathcal{O}(1)\) 计算。记 \(\mathrm{merge}(l,k,r)\) 表示合并 \([l,k]\) 和 \([k+1,r]\) 的代价,则

\[f_{l,r}=\begin{cases}\min_{k=l}^{r-1}f_{l,k}+f_{k+1,r}+\mathrm{merge}(l,k,r)& \mathrm{diff}(l,r)\\\infty&\mathrm{otherwise}\end{cases}
\]

\(g\) 的转移是 trivial 的:

\[g_i=\min_{j=0}^{i-1}\begin{cases}g_j+f_{j+1,i} & \mathrm{mex}(j+1,i)=i-j+1\\\infty&\mathrm{otherwise}\end{cases}
\]

若 \(g_n=\infty\) 则输出 impossible,时间复杂度 \(\mathcal{O}(n^3)\)。

 const int N = 500 + 5;
const int inf = 1e8; int n, a[N], f[N], g[N][N], s[N][N], mi[N][N], mex[N][N], ck[N][N];
int cal(int l, int r, int x1, int x2) {
return s[r][x2] - s[l - 1][x2] - s[r][x1 - 1] + s[l - 1][x1 - 1];
}
void cmex(int l, int r) {
static int buc[N]; mem(buc, 0, N), mex[l][r] = 1;
for(int i = l; i <= r; i++) buc[a[i]] = 1;
while(buc[mex[l][r]]) mex[l][r]++;
}
void csam(int l, int r) {
static int buc[N]; mem(buc, 0, N);
for(int i = l; i <= r; i++)
ck[l][r] |= buc[a[i]], buc[a[i]] = 1;
}
int mer(int l, int k, int r) {
assert(l <= k && k < r && !ck[l][r]);
int m1 = mi[l][k], m2 = mi[k + 1][r];
return cal(l, k, m2, N - 1) + cal(k + 1, r, m1, N - 1);
}
int main() {
cin >> n, mem(mi, 31, N), mem(g, 31, N), mem(f, 31, N), f[0] = 0;
for(int i = 1; i <= n; i++) s[i][a[i] = read()]++, g[i][i] = 0;
for(int i = 1; i <= n; i++)
for(int j = 1; j < N; j++)
s[i][j] += s[i][j - 1] + s[i - 1][j] - s[i - 1][j - 1];
for(int i = 1; i <= n; i++)
for(int j = i; j <= n; j++)
cmex(i, j), csam(i, j), mi[i][j] = min(mi[i][j - 1], a[j]);
for(int len = 2; len <= n; len++)
for(int l = 1, r = len; r <= n; l++, r++)
if(!ck[l][r]) for(int k = l; k < r; k++)
g[l][r] = min(g[l][r], g[l][k] + g[k + 1][r] + mer(l, k, r));
for(int i = 1; i <= n; i++)
for(int j = 0; j < i; j++)
if(mex[j + 1][i] == i - j + 1)
f[i] = min(f[i], f[j] + g[j + 1][i]);
if(f[n] >= inf) puts("Impossible");
else cout << f[n] << endl;
return 0;
}

BZOJ3971 [WF2013]Матрёшка的更多相关文章

  1. 【BZOJ】3971 [WF2013]Матрёшка

    [算法]区间DP [题解] 参考写法:BZOJ 3971 Матрёшка 解题报告 第二个DP可以预处理mex优化到O(nM+n2),不过我懒…… 第一个DP有另一种写法:不预处理,在一个n2取出来 ...

  2. ACM - ICPC World Finals 2013 H Матрёшка

    原题下载:http://icpc.baylor.edu/download/worldfinals/problems/icpc2013.pdf 题目翻译: 问题描述 俄罗斯套娃是一些从外到里大小递减的传 ...

  3. BZOJ 3971 Матрёшка 解题报告

    很自然想到区间 DP. 设 $Dp[i][j]$ 表示把区间 $[i, j]$ 内的套娃合并成一个所需要的代价,那么有: $Dp[i][i] = 0$ $Dp[i][j] = min\{Dp[i][k ...

  4. 区间dp提升复习

    区间\(dp\)提升复习 不得不说这波题真的不简单... 技巧总结: 1.有时候转移可以利用背包累和 2.如果遇到类似区间添加限制的题可以直接把限制扔在区间上,每次只考虑\([l,r]\)被\([i, ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. hibernate 中文文档

    转载:http://blog.csdn.net/kevon_sun/article/details/42850387 Hibernate Annotations 参考文档 3.2.0 CR1 目录 前 ...

  7. ACM International Collegiate Programming Contest World Finals 2013

    ACM International Collegiate Programming Contest World Finals 2013 A - Self-Assembly 题目描述:给出\(n\)个正方 ...

  8. BZOJ_3969_[WF2013]Low Power_二分答案

    BZOJ_3969_[WF2013]Low Power_二分答案 Description 有n个机器,每个机器有2个芯片,每个芯片可以放k个电池. 每个芯片能量是k个电池的能量的最小值. 两个芯片的能 ...

  9. bzoj 3969: [WF2013]Low Power 二分

    3969: [WF2013]Low Power Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

随机推荐

  1. Linux基础是零基础必须要过的关,你懂了多少

    #LINUX基础学习 ##命令行下的基础知识 Linux区分英文的大小写. date :查看时间 cal:查看日历 [Tab] 热键 :可以自动补全命令名和文件名 [Ctrl]+C 热键 :可以中断正 ...

  2. 用STM32内置的高速ADC实现简易示波器

    做一个数字采样示波器一直是我长久以来的愿望,不过毕竟这个目标难度比较大,涉及的方面实在太多,模拟前端电路.高速ADC.单片机.CPLD/FPGA.通讯.上位机程序.数据处理等等,不是一下子就能成的,慢 ...

  3. CODING —— 云原生时代的研发工具领跑者

    本文为 CODING 创始人兼 CEO 张海龙在腾讯云 CIF 工程效能峰会上所做的分享. 文末可前往峰会官网,观看回放并下载 PPT. 大家上午好,很高兴能有机会与大家分享 CODING 最近的一些 ...

  4. 整数中1出现的次数 牛客网 剑指Offer

    整数中1出现的次数 牛客网 剑指Offer 题目描述 求出113的整数中1出现的次数,并算出1001300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此 ...

  5. 装了这几个IDEA插件,基本上一站式开发了!

    前言 前几天有社区小伙伴私聊我,问我都用哪些IDEA插件,我的IDEA的主题看起来不错. 作为一个开源作者,每周要code大量的代码,提升日常工作效率是我一直追求的,在众多的IDEA插件中,我独钟爱这 ...

  6. k8s入坑之路(11)kubernetes服务发现

    kubernetes访问场景 1.集群内部访问 2.集群内部访问外部 3.集群外部访问内部 1.集群内部访问 1.pod之间直接ip通讯(利用calico通过路由表经过三层将ip流量转发)由于容器之间 ...

  7. JDK源码阅读(5):HashTable类阅读笔记

    HashTable public class Hashtable<K,V> extends Dictionary<K,V> implements Map<K,V>, ...

  8. go struct结构

    p.p1 { margin: 0; font: 12px ".PingFang SC"; color: rgba(69, 69, 69, 1) } span.s1 { font: ...

  9. 在k8s中收集jvm异常dump文件到OSS

    现状 加参数 -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=logs/test.dump 可以实现在jvm发生内存错误后 会生成dump文件 方便开 ...

  10. storm启动报错: InvalidTopologyException(msg:Component: [mybolt] subscribes from non-existent stream: [default] of component [es-bolt])

    storm每一个bolt在emit之后需要把数据传递到下一个bolt,所以declareOUtputFields 一定要写 默认的情况下不用加streamId,如果加了streamId,后面的bolt ...