*XXXIV. BZOJ3971 [WF2013]Матрёшка

摘自 DP 做题记录 II 例题 XXXIV.

仍然是神仙区间 DP。

直接设状态 \(f_{i,j}\) 表示区间 \([i,j]\) 的答案不太方便,考虑最终答案一定由若干段 \(1\sim m\) 的套娃合并在一起,所以我们设 \(f_{i,j}\) 表示把 \([i,j]\) 合并成一个套娃的最小代价并设 \(g_i\) 表示把长度 \(i\) 的前缀合并成若干个合法套娃的最小代价,则答案为 \(g_n\)。

考虑怎么算 \(f_{l,r}\):首先 \(l,r\) 不能有相同大小的套娃,记为 \(\mathrm{diff}(l,r)\)。然后枚举断点 \(k\),注意到 \([l,k]\) 所有大于 \(\min [k+1,r]\) 的套娃需要被拆开,以及 \([k+1,r]\) 所有大于 \(\min[l,k]\) 的套娃需要被拆开,这个可以二维前缀和预处理 \(s_{l,V}\) 表示 \(1\sim l\) 有多少个大小在 \(1\sim V\) 的套娃并 \(\mathcal{O}(1)\) 计算。记 \(\mathrm{merge}(l,k,r)\) 表示合并 \([l,k]\) 和 \([k+1,r]\) 的代价,则

\[f_{l,r}=\begin{cases}\min_{k=l}^{r-1}f_{l,k}+f_{k+1,r}+\mathrm{merge}(l,k,r)& \mathrm{diff}(l,r)\\\infty&\mathrm{otherwise}\end{cases}
\]

\(g\) 的转移是 trivial 的:

\[g_i=\min_{j=0}^{i-1}\begin{cases}g_j+f_{j+1,i} & \mathrm{mex}(j+1,i)=i-j+1\\\infty&\mathrm{otherwise}\end{cases}
\]

若 \(g_n=\infty\) 则输出 impossible,时间复杂度 \(\mathcal{O}(n^3)\)。

 const int N = 500 + 5;
const int inf = 1e8; int n, a[N], f[N], g[N][N], s[N][N], mi[N][N], mex[N][N], ck[N][N];
int cal(int l, int r, int x1, int x2) {
return s[r][x2] - s[l - 1][x2] - s[r][x1 - 1] + s[l - 1][x1 - 1];
}
void cmex(int l, int r) {
static int buc[N]; mem(buc, 0, N), mex[l][r] = 1;
for(int i = l; i <= r; i++) buc[a[i]] = 1;
while(buc[mex[l][r]]) mex[l][r]++;
}
void csam(int l, int r) {
static int buc[N]; mem(buc, 0, N);
for(int i = l; i <= r; i++)
ck[l][r] |= buc[a[i]], buc[a[i]] = 1;
}
int mer(int l, int k, int r) {
assert(l <= k && k < r && !ck[l][r]);
int m1 = mi[l][k], m2 = mi[k + 1][r];
return cal(l, k, m2, N - 1) + cal(k + 1, r, m1, N - 1);
}
int main() {
cin >> n, mem(mi, 31, N), mem(g, 31, N), mem(f, 31, N), f[0] = 0;
for(int i = 1; i <= n; i++) s[i][a[i] = read()]++, g[i][i] = 0;
for(int i = 1; i <= n; i++)
for(int j = 1; j < N; j++)
s[i][j] += s[i][j - 1] + s[i - 1][j] - s[i - 1][j - 1];
for(int i = 1; i <= n; i++)
for(int j = i; j <= n; j++)
cmex(i, j), csam(i, j), mi[i][j] = min(mi[i][j - 1], a[j]);
for(int len = 2; len <= n; len++)
for(int l = 1, r = len; r <= n; l++, r++)
if(!ck[l][r]) for(int k = l; k < r; k++)
g[l][r] = min(g[l][r], g[l][k] + g[k + 1][r] + mer(l, k, r));
for(int i = 1; i <= n; i++)
for(int j = 0; j < i; j++)
if(mex[j + 1][i] == i - j + 1)
f[i] = min(f[i], f[j] + g[j + 1][i]);
if(f[n] >= inf) puts("Impossible");
else cout << f[n] << endl;
return 0;
}

BZOJ3971 [WF2013]Матрёшка的更多相关文章

  1. 【BZOJ】3971 [WF2013]Матрёшка

    [算法]区间DP [题解] 参考写法:BZOJ 3971 Матрёшка 解题报告 第二个DP可以预处理mex优化到O(nM+n2),不过我懒…… 第一个DP有另一种写法:不预处理,在一个n2取出来 ...

  2. ACM - ICPC World Finals 2013 H Матрёшка

    原题下载:http://icpc.baylor.edu/download/worldfinals/problems/icpc2013.pdf 题目翻译: 问题描述 俄罗斯套娃是一些从外到里大小递减的传 ...

  3. BZOJ 3971 Матрёшка 解题报告

    很自然想到区间 DP. 设 $Dp[i][j]$ 表示把区间 $[i, j]$ 内的套娃合并成一个所需要的代价,那么有: $Dp[i][i] = 0$ $Dp[i][j] = min\{Dp[i][k ...

  4. 区间dp提升复习

    区间\(dp\)提升复习 不得不说这波题真的不简单... 技巧总结: 1.有时候转移可以利用背包累和 2.如果遇到类似区间添加限制的题可以直接把限制扔在区间上,每次只考虑\([l,r]\)被\([i, ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. hibernate 中文文档

    转载:http://blog.csdn.net/kevon_sun/article/details/42850387 Hibernate Annotations 参考文档 3.2.0 CR1 目录 前 ...

  7. ACM International Collegiate Programming Contest World Finals 2013

    ACM International Collegiate Programming Contest World Finals 2013 A - Self-Assembly 题目描述:给出\(n\)个正方 ...

  8. BZOJ_3969_[WF2013]Low Power_二分答案

    BZOJ_3969_[WF2013]Low Power_二分答案 Description 有n个机器,每个机器有2个芯片,每个芯片可以放k个电池. 每个芯片能量是k个电池的能量的最小值. 两个芯片的能 ...

  9. bzoj 3969: [WF2013]Low Power 二分

    3969: [WF2013]Low Power Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

随机推荐

  1. javascript-vue介绍

    vue.js是一个用于创建web交互页面的库 从技术角度讲,vue专注于MVVM模型的viewModel层,它通过双向数据绑定把view层和model层连接起来,实际DOM封装和输出格式都被抽象为Di ...

  2. AIApe问答机器人Scrum Meeting 4.23

    Scrum Meeting 1 日期:2021年4月23日 会议主要内容概述:各成员汇报进度情况,前后端针对WebAPI进行协调与统一工作. 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完 ...

  3. 乘风破浪,遇见上一代操作系统Windows 10 - 抢鲜尝试安装新微软商店(Microsoft Store)

    背景 在微软官方文章的<十一项关于微软商店新知>中提到: 新的微软商店现在可在Windows 11上找到,我们很高兴地分享,它将在未来几个月内提供给Windows 10客户!我们将很快分享 ...

  4. windows server 2012 开机运行一段时间死机的故障

    环境: 物理机:华为2288 V5 虚拟化:esxi 6.5.2 虚拟操作系统 windwos server 2012 标准版 内安装sql server 和其他应用软件 故障描述:window se ...

  5. k8s入坑之路(14)scheduler调度 kubelet管理及健康检查 更新策略

    kubelet 主要功能 Pod 管理 在 kubernetes 的设计中,最基本的管理单位是 pod,而不是 container.pod 是 kubernetes 在容器上的一层封装,由一组运行在同 ...

  6. properties 文件解析

    1.提供properties文件 jdbc.driver=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3306/future?useUn ...

  7. JMeter学习笔记--性能测试理论

    一.性能测试技能树 二.性能测试流程 三.性能测试相关术语 性能测试指标就是: 多(并发量)快(响应时间)好(稳定性[长时间运行])省(资源使用率).思考时间 1.负载 模拟业务操作对服务器造成压力的 ...

  8. CommonJS与ES6 Module的使用与区别

    CommonJS与ES6 Module的使用与区别 1. CommonJS 1.1 导出 1.2 导入 2. ES6 Module 2.1 导出 2.2 导入 3. CommonJS 与 ES6 Mo ...

  9. S2-001漏洞分析

    前言 开始好好学Java,跟着师傅们的文章走一遍 Strust简介 Struts2是流行和成熟的基于MVC设计模式的Web应用程序框架. Struts2不只是Struts1下一个版本,它是一个完全重写 ...

  10. sqlalchemy delete object

    In SQL Alchemy you are deleting Objects that you get with a query from the database. This you can do ...