标算是状压dp+打表,前者时间复杂度为$o(n^{2}2^{n})$,并通过打表做到$o(1)$

参考loj2265中关于杨表的相关知识,不难发现答案即$\frac{\sum_{a\vdash n}a_{1}f_{a}^{2}}{n!}$

记$P(n)$为$a\vdash n$的方案数,后者$f_{a}$可以$o(n)$计算,总复杂度即$o(nP(n))$

不难发现$P(n)$即为A000041,有$P(28)=3718$(甚至$P(60)\le 10^{6}$),显然可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 30
4 #define mod 998244353
5 #define ll long long
6 vector<int>v;
7 int n,ans,inv[N];
8 void calc(int k,int lst){
9 if (!k){
10 int s=1;
11 for(int i=0;i<v.size();i++)
12 for(int j=1;j<=v[i];j++){
13 int tot=v[i]-j;
14 for(int k=i;k<v.size();k++)
15 if (j<=v[k])tot++;
16 s=(ll)s*inv[tot]%mod;
17 }
18 for(int i=1;i<=n;i++)s=(ll)s*i%mod;
19 s=(ll)v[0]*s%mod*s%mod;
20 ans=(ans+s)%mod;
21 return;
22 }
23 for(int i=min(k,lst);i;i--){
24 v.push_back(i);
25 calc(k-i,i);
26 v.pop_back();
27 }
28 }
29 int main(){
30 inv[0]=inv[1]=1;
31 for(int i=2;i<N;i++)inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
32 scanf("%d",&n);
33 calc(n,n);
34 for(int i=1;i<=n;i++)ans=(ll)ans*inv[i]%mod;
35 printf("%d\n",ans);
36 return 0;
37 }

[luogu4484]最长上升子序列的更多相关文章

  1. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  2. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  3. [Data Structure] LCSs——最长公共子序列和最长公共子串

    1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...

  4. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  5. LintCode 77: 最长公共子序列

    public class Solution { /** * @param A, B: Two string. * @return: the length of the longest common s ...

  6. 最长下降子序列O(n^2)及O(n*log(n))解法

    求最长下降子序列和LIS基本思路是完全一样的,都是很经典的DP题目. 问题大都类似于 有一个序列 a1,a2,a3...ak..an,求其最长下降子序列(或者求其最长不下降子序列)的长度. 以最长下降 ...

  7. 删除部分字符使其变成回文串问题——最长公共子序列(LCS)问题

    先要搞明白:最长公共子串和最长公共子序列的区别.    最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,L ...

  8. [BZOJ3173][Tjoi2013]最长上升子序列

    [BZOJ3173][Tjoi2013]最长上升子序列 试题描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上 ...

  9. 3173: [Tjoi2013]最长上升子序列

    原题:http://www.lydsy.com/JudgeOnline/problem.php?id=3173 题解:促使我写这题的动力是,为什么百度遍地是Treap,黑人问号??? 这题可以用线段树 ...

随机推荐

  1. 从零入门 Serverless | 函数计算如何粘合云服务,提供端到端解决方案

    作者 | 西流 阿里云技术专家 导读:阿里云 Serverless 产品函数计算可以作为粘合剂,串联其他云服务提供端到端解决方案,从而简化编程模型,快速实现最上层的业务目标. 传统单体应用的拆解 首先 ...

  2. 开发数学系统时,需要掌握的几个基于Web的数学框架

    在做数学系统时,经常要和数学公式打交道,这里介绍几个常用的基于Web的数学处理软件. 数学系统主要包括三类:(1)数学公式的显示,也就是如何使用web显示复杂的数学公式. (2)图像制作,例如长方形, ...

  3. MySQL的详细讲解

    目录 Mysql的架构与历史 MySQL的逻辑架构 更新中---- Mysql的架构与历史 MySQL的逻辑架构 第二层的架构是所有的跨引擎的功能实现的地方,例如:存储,触发器,视图等. 第三层半酣了 ...

  4. SPOJ2939 QTREE5(LCT维护子树信息)

    QWQ嘤嘤嘤 此题正规题解应该是边分治??或者是树剖(总之不是LCT) 但是我这里还是把它当成一个LCT题目来做 首先,这个题的重点还是在update上 因为有\(makeroot\)这个操作的存在, ...

  5. 巧用 CSS3 filter(滤镜) 属性

    原文链接:CSS3 filter(滤镜) 属性 效果预览 filter: grayscale(100%); 定义和使用 filter 属性定义了元素(通常是<img>)的可视效果(例如:模 ...

  6. javascript-原生-结构

    1.获取用户输入内容的方法 window.prompt("提示信息","默认值"); 获取用户输入内容(字符串类型),返回用户输入内容. 2.顺序结构:所有语句 ...

  7. HCNP Routing&Switching之BGP防环机制和路由聚合

    前文我们了解了BGP路由宣告相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15440860.html:今天我们来聊一聊BGP防环机制和路由聚合相关话题 ...

  8. 浅析ReDoS的原理与实践

    转载于http://www.freebuf.com/articles/network/124422.html ReDoS(Regular expression Denial of Service) 正 ...

  9. 【二食堂】Beta - Scrum Meeting 7

    Scrum Meeting 7 例会时间:5.19 18:30~18:50 进度情况 组员 当前进度 今日任务 李健 1. 文本区域的前后端对接完成,bug已经修复issue2. 自定义关系的添加与删 ...

  10. 第6次 Beta Scrum Meeting

    本次会议为Beta阶段第6次Scrum Meeting会议 会议概要 会议时间:2021年6月8日 会议地点:「腾讯会议」线上进行 会议时长:15min 会议内容简介:对完成工作进行阶段性汇报:对下一 ...